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Abstract

Published literature was surveyed for automated statistical classifiers that make use of a common set 
of physiological response features. These features were first introduced and described by researchers 
at the University of Utah during the 1980s, and have subsequently come to be described with the 
polygraph profession as Kircher features. These include the amplitude of increase for electrodermal 
and cardiovascular activity, along with a reduction of respiration activity. Constriction or reduction 
of vasomotor pulse amplitude can also be included. An interesting characteristic of these features, in 
addition to their statistical correlation with deception and truth-telling, they can be extracted from 
recorded time-series data both visually and via automated computer methods. Statistical classifiers 
based on these features include the following: Probability Analysis, a Rank Order Scoring System, 
an Objective Permutation method, a Bootstrap analysis method, the Empirical Scoring System/Mul-
tinomial, the Objective Scoring System (version 1 and 2), and the Objective Scoring System – version 
3. Design characteristics of these analysis methods are summarized in the appendices.  
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1Polygraph decision rules make use of aggregated numerical information, such as grand total scores and subtotal scores. 
[See Nelson (2018) for a description of various decision rules including the grand total rule (GTR), two-stage rule (TSR), 
subtotal score rule (SSR), and others.]

Introduction

Polygraph scoring algorithms, like all data 
analysis algorithms, consist of several funda-
mental operations or common functions. These 
include: feature extraction, numerical trans-
formation and data reduction, use of some 
form of likelihood function, and structured 
rules or methods for interpretation and classi-
fication of output or results. Because all data 
analysis begins with feature extraction – the 
identification of useful and informative vari-
ation within the available data – development 
of knowledge about useful response features 
is an area of knowledge that be foundation-
al to the development of varied methodologi-
cal approaches when developing solution for 
the other, subsequent, functions within a data 
analysis method. 

An example of this is a feature set that has 
come to be referred to as the Kircher fea-
tures, (Kircher, 1981, 1983; Kircher & Raskin, 
1988) as first described using this moniker by 
Krapohl and McManus (1999). In brief, these 
features consist of the primary signal for each 
of the traditional recording sensors: electro-
dermal phasic response amplitude, phasic in-
crease in relative blood pressure, and reduc-
tion of respiration activity. Vasomotor activity 
can also be included in this feature set. Oth-
er researchers (Harris, Horner & McQuarrie, 
2000; Kircher, Kristjansson, Gardner & Webb, 
2004; Podlesny & Truslow, 1993; Rovner, 
1986) have also shown the effectiveness of 
these response features. 

Development of a data analysis method is a 
process of first specifying the desired output 
information –such as a statistical classifica-
tion of deception or truth-telling – and then 
deconstructing the process of achieving that 
goal into a coherent set of assumptions and a 
reproducible series of functions. All algorithms 
consist of four essential functions, including: 
feature extraction, numerical transformation 
and data reduction, some form of likelihood 
function, and a set of rules or procedures used 
to interpret the test result. Of course, other 

process descriptions are also possible. How-
ever, these four basic functions can be gen-
eralized to nearly all data analysis methods, 
whether manual or automated, and whether 
based in traditional statistical classification 
and prediction methods or machine-learning/
artificial-intelligence. 

Working backwards from through these func-
tions, interpretation, in this usage refers to 
the process of translating a numerical and 
statistical result into conceptual information 
that may be useful or informative to persons 
not intimate with, or not involved in, the test-
ing process or data analysis process. In oth-
er words, interpretation serves to answer the 
question: what does the test result actually 
mean? Categorical test results (i.e., positive or 
negative, and other allegorical terms) are the 
most simplistic form of interpretation and pro-
vide the smallest amount of detail about the 
scientific meaning of a test result – but often 
provide the most practical or actionable form 
of interpretation. In polygraph field practice, 
categorical results are the result of a proce-
dural decision rule . However, categorical re-
sults can be a source of misunderstanding 
and confusion when they are naively expected 
to be infallible. As a rule, scientific tests are 
not expected to be infallible. Although subject 
to dichotomous interpretation, all scientific 
test results are fundamentally probabilistic 
and therefore subject to inherent uncertainty. 
One of the main goals of any scientific test is 
to quantify and/or reduce the degree of uncer-
tainty associated with a conclusion.

A likelihood function is a device used to ob-
tain a reproducible statistical value for the 
observed test data. Likelihood functions can 
take many forms, including both empirical 
and mathematical distributions. A likelihood 
function can also be thought of as the param-
eters and formulae used to calculate a refer-
ence distribution. A simple and practical ex-
ample of a likelihood function is a published 
table of values for a reference distribution. 
The most basic and simple form of likelihood 
function is a numerical cutscore at which a 
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categorical test result is selected. Numerical 
cutscores can be thought of as associated with 
some statistical likelihood that a test result is 
correct or incorrect. 

Before any statistical value can be calculat-
ed, recorded data, if not already numerical, 
must be subject to numerical transformation 
and data reduction. Procedures for obtaining 
these numerical values can vary widely, and 
can include the use of physical measurement 
where applicable, likert scales, rank-ordering, 
use of ratios, z-scores or other mathematical 
or statistical values. Data reduction methods 
can also vary, and can include summation, 
averaging, weighted averaging, discriminate 
functions, log functions, resampling, and oth-
er methods. The functional objective of data 
transformation and numerical reduction is to 
transform recorded test data to a set of useful 
numerical values, and to reduce those values 
to a small set of numbers for which a statisti-
cal value can be obtained. 

Before any numerical or statistical results can 
be calculated, useful response features must 
be extracted from the recorded data. Feature 
extraction is the beginning of any algorithmic 
or procedural method for data analysis. All 
data are a combination of signal and noise. 
Feature extraction is the process of identi-
fying and isolating the response information 
of interest, including the identification of re-
sponse onset and response end. Under ideal 
circumstances the ratio of signal to noise is 
very high, and it is very easy to isolate useful 
signal information from useless noise. Feature 
extraction research is foundational to the de-
velopment of solutions for all subsequent an-
alytic functions2.

Method

Published literature was surveyed for descrip-
tions of statistical classifiers based on phys-
iological response features described by re-
searchers at the University of Utah (Kircher 
& Raskin, 1988). Design and development 
characteristics were enumerated for these 

2For simplicity, this discussion ignores the series of important functions prior to data analysis, including sensor 
development, stimulus development, test administration, signal processing, and data recording.

methods. Information was sought for the 
type of decision method and type of statistical 
classifier, along with methods for numerical 
transformation and data reduction – includ-
ing the selection of selecting relevant-compar-
ison question pairs where applicable. General 
methods for the development of a statistical 
likelihood function are described for each 
analysis algorithm, Finally, procedural rules 
for interpretation or classification of deception 
and truth-telling are described for each anal-
ysis method, as applicable to single issue and 
multiple issue polygraph examinations.

Results

Seven different statistical classifiers were 
found in the published literature. These in-
clude: Probability Analysis (PA; Kircher & 
Raskin, 1988), a Rank Order Scoring System 
(ROSS; Honts & Driscoll, 1987; 1988), a Boot-
strap Analysis Method (BAM; Honts & Devitt, 
1992), the Objective Scoring System – versions 
1-2 (OSS 1-2: Krapohl, 2002; Krapohl & Mc-
Manus, 1999), an Objective Permutation Scor-
ing method (OPS; MacLaren & Krapohl 2003), 
the Objective Scoring System version 3 (OSS-
3; Nelson, Krapohl & Handler, 2008), and 
the Empirical Scoring System – Multinomial 
(ESS/ESS-M; Nelson, 2017a; Nelson, Krapohl 
& Handler, 2008).

Information of interest to this survey, in addi-
tion to the use of Kircher features and associ-
ated recording sensor, included the following: 
decision model, statistical classifier, numerical 
transformation, method or procedure for se-
lecting RQ and CQ analysis pairs, data reduc-
tion method, type of likelihood function, and 
procedural decision rules. Type of decision 
model refers to the overall method by which 
a classification is achieved; this can include 
the use of a z-test, gaussian-gaussian signal 
discrimination, simple Bayes, or other meth-
od. A number of types of statistical classifiers 
were observed, including, p-values, posterior 
odds, point and cutscore comparisons that are 
mapped to TN and TP rates, and other meth-
ods. Polygraph field examiners who desire to 
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better understand differences between man-
ual and automated scoring methods may be 
interested in the variety of methods employed 
for the selection and comparison of RQ and 
CQ value pairs. Methods for numerical trans-
formation included rank transformations, dif-
ference scores, z-scores, and other methods. 
Strategies for reducing sensor and question 
subtotals to grand total scores included sum-
mation, averaging and weighted averaging. A 
variety of types of likelihood functions were 
observed, including empirical distributions, 
multinomial distributions, bootstrap distribu-
tions, permutations, and other methods. Deci-
sion rules included the use subtotal scores for 
multiple issue exams, grand total scores for 
single issue exams and other procedural solu-
tions. Design and development characteristics 
for each of these analysis methods is shown in 
Appendices A-G.

Conclusion 

Kircher features have been a useful and effec-
tive solution to the challenges of polygraphic 
feature extraction since the 1980s. The exis-
tence of an easily identified and easily used 
feature set has facilitated the study and devel-
opment of a variety of types of statistical clas-
sifiers. These features were first described in 
the development and of the Probability Anal-
ysis algorithm (Kircher & Raskin, 1988). At 
this time, seven different computer algorithms 
can be found in the published literature that 
make use of this common polygraph feature 
set. Many of these methods are available in 
commercial and professional products in use 
by polygraph field practitioners. 

Because all of the surveyed analysis methods 
are based on Kircher features, they all includ-
ed similar recording sensors. Some differenc-
es in signal processing may exist for different 
polygraph instruments.  However, signal pro-
cessing differences are beyond the scope of 
this project. A number of different types of sta-
tistical classifiers are included in the surveyed 
analysis methods. These include maximum 
likelihood estimation, linear discriminate 
analysis, gaussian-gaussian signal detection/
discrimination, permutation and bootstrap-
ping methods, and rank transformations. 
Some methods make use of simple Bayesian 
classifiers, for which the posterior result may 

be thought of pragmatically as a probability of 
deception or truth-telling. 

Vasomotor response data, although it can be 
thought of as one of the Kircher features, is 
not included in most these analysis methods. 
Although information on vasomotor activity 
can be found in the published literature – in-
cluding publications by some developers of 
available scoring algorithms – it has not been 
included in the structural model of the pub-
lished and available scoring methods. Reasons 
for this have not been completely discussed. 
However, it can be assumed that vasomotor 
data would more likely have been included if it 
had improved the effect sized of the published 
structural models. It can therefore be hypoth-
esized that vasomotor data, though perhaps 
correlated with the criterion of interest, may 
not have improved the structural models de-
scribed in in the published literature. Addi-
tion of vasomotor data would require a suf-
ficient basis of data with which to re-develop 
the various likelihood functions and study 
the resulting effect sizes. One analysis meth-
od, the ESS-M (Nelson, 2017a) does include a 
likelihood function that can include vasomo-
tor data. However, published information does 
not show any difference in effect size when 
including the vasomotor information (Nelson, 
2017b). A more complete understanding of the 
potential vasomotor response data and effect 
sizes for automated scoring methods will re-
quire replication and extension of these algo-
rithm methods, in addition to the recalcula-
tion or redevelopment of associated likelihood 
functions.  

Limitations of this project are several, and in-
clude the fact that this project is intended only 
to provide a descriptive summary of design 
characteristics of these different methods. 
No mathematical or procedural description of 
the identified scoring methods is included in 
this report.  Another limitation of this survey 
is that it does not include other computer-
ized analytic methods that make use of other 
scoring features. Other analysis methods may 
exist in publication, including methods that 
rely on proprietary and boutique feature ex-
traction methods, and response features that 
are less familiar or intuitive for field polygraph 
practitioners – for example, spectral response 
features. This project is limited to methods 
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that exist in open publication, and does not 
include algorithms that are subject to propri-
etary or intellectual property restriction. Other 
research should address the need for informa-
tion on those methods. Finally, no informa-
tion on effect sizes is described for the algo-
rithms included in this report. Other research 
should address the need for information on 
effect sizes – including sensitivity, specificity, 
false-positive, and false-negative rates, and 
associated errors of measurement. Future re-
search should further investigate potential ad-
vantages to the various solutions to the series 
of challenges inherent to automated statical 
data analysis and classification. 

This project is a brief description of conceptu-
al, albeit non-technical, information that may 
be useful to readers who want an introduction 
to the topic of polygraph computer scoring al-
gorithms, along with an introduction to the 

breadth of activity in this area throughout the 
past 35 or more years. In addition to the fact 
that the availability of a useful set of known 
response features has enabled a variety of re-
searchers to study the application different 
statistical methods to classification of decep-
tion and truth-telling, Kircher features have 
the advantage that they can provide some in-
tuitive understanding to field polygraph exam-
iners who desire to understand what details of 
the recorded physiology is included in the anal-
ysis. Indeed Kircher feature can be extracted 
either manually or via automation. It is hoped 
that this information is useful or informative 
to those interested in polygraph data analysis 
algorithm development, and to field polygraph 
professionals who wish to more fully under-
stand differences between various analysis 
methods and traditional manual scoring pro-
cedures.
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Appendix A. Probability Analysis 
 
 
Probability Analysis (Kircher & Raskin, 1988) 
Sensors Respiration (thoracic and abdominal), Electrodermal, Cardiovascular 
Response Features Reduction of respiration activity, electrodermal amplitude of phasic 

response, cardiovascular phasic increase in relative blood pressure. 
Decision model The algorithm computes a discriminate function that serves as a 

statistical classifier – a statistical value value for which decision 
cutpoints can make categorical classifications of deception or truth-
telling. 

Statistical classifier Bayesian analysis using a likelihood function obtained via discriminant 
analysis. Results can be thought of as a posterior probability of 
deception or truth-telling. 

CQ Selection For each sensor, between chart mean for all RQs is compared to the 
between chart mean for all CQs.  

Numerical transformation Numerical values transformed to z-scores for each sensor using 
combined RQs and CQs.  

Data reduction Z-scores are averaged between-charts for the individual sensors for all 
RQs, and for all CQs. Sensor z-scores are then combined using a 
structural weighting function that was obtained using linear 
discriminate analysis.  

Likelihood function Two likelihood formulas are used to calculate complimentary likelihood 
values for deception and truth-telling. 

Decision rules – single issue GTR 
Decision rules – multiple issue none 
Comments Structural coefficients are available from the developers and also from 

replication studies. Publication describe the application of PA to single 
issue exam formats. Application of the PA algorithm to multiple issue 
exams may require a change from the aggregation of RQs and CQs 
both within and between charts. Advantages of separate within-chart 
and between-chart transformation schemes have not been fully 
described in publication, however subsequent algorithm have shown 
the application of these to multiple issue exams. For this reason it may 
be possible to adapt PA to multiple issue test formats.  
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Appendix B. Rank Order Scoring System 
 
 
ROSS (Honts & Driscoll, 1987, 1988)  
Sensors Respiration (thoracic and abdominal), Electrodermal, Cardiovascular, 

Vasomotor 
Decision model ROSS decision model is similar to a gaussian-gaussian signal 

discrimination method, using empirically derived summed rank 
distributions for guilty and innocent cases.  

Statistical classifier Statistical classifiers are empirically derived TP, TN, FP, and FN rates. 
Response Features Reduction of respiration activity, electrodermal amplitude of phasic 

response, cardiovascular phasic increase in relative blood pressure. 
CQ Selection CQs and RQs are not paired for analysis as in tradition polygraph 

scoring. Instead, rank order analysis begins with the assignment of 
integer rank scores to all test stimuli, including all CQs and all RQs 
together, within each recorded chart 

Numerical transformation Integer scores are assigned to rank order variance of RQs and CQs 
for each sensor, within each chart. Rank scores are assigned in 
reverse order, wherein the response with the greatest change in 
physiology is assigned a rank value equal to the total number of RQs 
and CQs, and the smallest response receives a rank value of 1.  

Data reduction Rank values are summed for all RQs for all charts, and also for all 
CQs for all charts. A CQtotal – RQtotal = RankDifference score is then 
calculated.  

Likelihood function Empirical distributions can be calculated for RankDifference scores, 
and numerical cutscores can be selected to achieve desired effect 
sizes.  

Decision rules – single issue GTR 
Decision rules – multiple issue SSR 
Comments Rank order transformations are a common non-parametric solution, 

and can sometimes optimize robustness with messy and difficult data 
with some potential cost due to the granularity of rank values. Each 
rank value is obtained by comparing each response to all other 
response (all other RQs and CQs), which may complicate 
assumptions of independent RQ variance for multiple issue exams.  
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Appendix C. Bootstrap Scoring System 
 
 
Bootstrap Scoring System (Honts & Devitt, 1992) 
Sensors Respiration (thoracic and abdominal), Electrodermal, Cardiovascular, 

Vasomotor 
Decision model Z-test of an observed CQ-RQ difference using a bootstrap null 

distribution. 
Statistical classifier P-value, indicating the likelihood of obtaining a score equal to or more 

extreme than the observed score under the null hypothesis that there 
is no difference between CQ and RQ value. 

Response Features Reduction of respiration activity, electrodermal amplitude of phasic 
response, cardiovascular phasic increase in relative blood pressure. 

CQ Selection Each RQ is paired with the preceding CQs to calculate CQ – RQ 
difference values after transforming all RQ and CQ values to z-Scores.  

Numerical transformation For each sensor, presentations of all RQs and CQs, for all combined 
charts, are transformed to z-Scores. In this way all scores for all 
sensors and all charts have a common scale value that can easily 
subject to bootstrapping.   

Data reduction  CQ – RQ = Z-difference scores were calculated for the z-Scores. Z-
Difference scores are hypothesized to be loaded at greater than zero 
values innocent subjects and less and zero for guilty subjects. Z-
difference scores are aggregated via summation to obtain a single Z-
difference score for an exam.   

Likelihood function A null distribution is calculated for each exam by combining all RQ and 
CQ z-Scores, for all charts and all sensors, into a single vector, and 
then bootstrapping a null distribution (random sampling with 
replacement) while arbitrarily assigning values as CQ or RQ.  

Decision rules – single issue GTR 
Decision rules – multiple issue NA 
Comments This method was described using single issue exams with an equal 

number of RQs and CQs, but could be adapted to multiple issue test 
formats and test formats with unequal numbers of RQs and CQs.  
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Appendix D. Objective Scoring System (OSS/OSS-2) 
 
 
OSS/OSS-2 (Krapohl & McManus, 1999; Krapohl, 2002) 
Sensors Respiration (thoracic and abdominal), Electrodermal, Cardiovascular, 
Decision model Gaussian-Gaussian signal-discrimination model (signal detection 

classifier applied to a signal discrimination task). 
Statistical classifier P-value, indicative of the likelihood of the observed test statistic under 

the distribution represented by the training data confirmed as opposite 
of the selected (deceptive or truthful) classification.  

Response Features Reduction of respiration activity, electrodermal amplitude of phasic 
response, cardiovascular phasic increase in relative blood pressure. 

CQ Selection Each RQ is compared to the preceding CQ 
Numerical transformation R/C ratios are transformed to integer scores using a distribution of 

uniform septile bins. OSS-2 7-position scores [-3, -2, -2, 0, +1, +2, +3] 
differ from tradition polygraph 7 position scores in that the range of 
OSS-2 scores can occur with equal likelihood, whereas traditional 7-
position scores are loaded near 0 with scores further from 0 occurring 
less frequently.  

Data reduction Integer scores are aggregated via summation for each RQ, for all 
sensors and all charts. RQ subtotals are then summed for a grand 
total score. Because integer scores are aggregated via summation it 
makes no difference whether sensor scores are summed first between 
charts or within-charts. 

Likelihood function OSS-2 reference tables are empirically derived  
Decision rules – single issue GTR 
Decision rules – multiple issue  none 
Comments OSS-2 likelihood functions (reference tables) available for single issue 

polygraph exams with 3 RQs and 3 charts. The summative design 
means that the likelihood function may be less robust with missing and 
artifacted data, and may be overloaded when more than three charts 
are used, and may become biased with test formats with unequal 
numbers of RQs and CQs. OSS likelihood functions have not been 
published for multiple issue exams, OSS-1 and OSS-2 began as 
manual scoring protocols, for which the structure and procedures were 
sufficiently structured and unambiguous that they led easily to 
automation. A result of this is that OSS and OSS-2 are now defacto 
automated analysis methods.  
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Appendix E. Permutation Scoring System 
 
 
Permutation Scoring System (MacLaren & Krapohl, 2003) 
Sensors Respiration (thoracic and abdominal), Electrodermal, Cardiovascular, 

Vasomotor 
Decision model A simple bayesian classifier using odds form of Bayes’ theorem, where 

p/(1-p) values obtained are from a permutation of uniform 7 position 
integer scores.  

Statistical classifier Use of Bayes’ theorem means that results can be thought of in 
practical terms as a posterior probability of deception or truth-telling.  

Response Features Reduction of respiration activity, electrodermal amplitude of phasic 
response, cardiovascular phasic increase in relative blood pressure. 

CQ Selection RQs are paired with preceding CQs.   
Numerical transformation A ratio is calculated for each RQ/CQ pair, after which two sets of 

integer scores are assigned using two distributions of uniform septile 
bins that were calculated from confirmed guilty and innocent cases.  

Data reduction Two sets of integer scores are summed to obtain two grand total 
scores (guiltyTotal and innocentTotal) which are then compared to a 
PSS likelihood function.  

Likelihood function PSS likelihood function is the permutation of all possible 7 position 
scores if they are not systematically associated with guilt or innocence. 
The exact distribution includes 6.57 x 10^22 possible combinations. It 
can be calculated using a combinatoric formula, and can be easily 
approximated via simulation. 

Decision rules – single issue GTR 
Decision rules – multiple issue none 
Comments PSS was developed with examination consisting of three 

presentations of a question sequence that includes three RQs and 3 
CQs. Adapting the PSS method to multiple issue exams, and to test 
formats with two or four RQs, and with four or five presentations 
requires available confirmed case data to calculate the uniform septile 
distributions, in addition to recalculation of the permutation likelihood 
function.  
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Appendix F. Objective Scoring System – version 3 
 
 
OSS-3 (Nelson, Krapohl & Handler, 2008) 
Sensors Respiration (thoracic and abdominal), Electrodermal, Cardiovascular 
Decision model Gaussian-Gaussian signal-discrimination model (signal detection 

classifier applied to a signal discrimination task). 
Statistical classifier P-value, indicative of the likelihood of the observed test statistic under 

the distribution represented by the training data confirmed as opposite 
of the selected (deceptive or truthful) classification.  

Response Features Reduction of respiration activity, electrodermal amplitude of phasic 
response, cardiovascular phasic increase in relative blood pressure. 

CQ Selection Mean CQ is compared to each RQ. 
Numerical transformation Log R/C ratios standardized to the training data. Sensor scores are 

standard scores (mean = 0, standard deviation = 1), from -3 to +3. 
Standardized log R/C ratios indicated the number of standard 
deviations an observed response is above or below the mean of the 
training data when guilty and innocent cases are combined. These 
scores are intuitively similar to the notion of 7 position polygraph 
scores, but with decimals.  

Data reduction Grand mean is the mean of between-chart RQ scores. Between-chart 
RQ scores are the means of within-chart weighted mean sensor 
scores. Sensor scores are standardized log R/C ratios. Sensor 
weighting coefficients obtained through linear discriminate analysis, 
and can also be calculated via logistic regression, bootstrapping and 
other methods with little difference in the resulting weighting function.  

Likelihood function OSS-3 reference tables are empirically derived for confirmed guilty 
and innocent cases.  

Decision rule – single issue GTR, TSR 
Decision rule – multiple issue SSR, OSS-3 Screening rule uses the K-W ANOVA method to evaluate 

differences and similarities between RQs to reduce the occurrence of 
inconclusive with multiple-issue exams (based on an assumption that 
truth-telling to all RQs will result in no significant differences in RQ 
scores).  

Comments OSS-3 was intended extend available knowledge from OSS-1 and 
OSS-2 to a wide variety of examination formats, including single and 
multiple issue exams with 2, 3, and 4 RQs, and 3, 4, or 5 charts. OSS-
3 was designed to be robust with some missing and artifacted data, 
and to use the 2nd of any repeated questions within a chart. Data 
reduction via averaging means that OSS-3 likelihood functions are 
more readily applicable to exams with 3, 4 or 5 presentations of the 
question sequence, and the log(RQ/CQmean) transform is applicable 
to test formats with unequal numbers of RQs and CQs. The algorithm 
also includes capabilities to mark artifacted and unusable segments 
for exclusion from analysis. Artifacted segments can be analyzed, 
using a test of proportions, to make inferences about their cause, 
whether systematic or random. 
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Appendix G. Empirical Scoring System (ESS/ESS-M) 
 
 
ESS/ESS-M (Nelson, 2017a; Nelson, Handler & Krapohl, 2008) 
Sensors Respiration (thoracic and abdominal), Electrodermal, Cardiovascular, 

Vasomotor 
Decision model ESS relies on a gaussian-gaussian signal discrimination model. ESS- 

is a simple bayesian classifier. ESS can also be studied and used with 
traditional/Federal cutscores to achieve empirically studied effect 
sizes.  

Statistical classifier ESS uses a p-value, obtained from an empirical distribution, that 
describes the likelihood of the observed data under a specified 
hypothesis. Cutscores for ESS were selected empirically, to constrain 
FN and FP errors to desired alpha levels. ESS-M results can be 
expressed as the posterior odds of deception or truth-telling. Use of 
Bayes’ theorem means that results can be thought of in practical terms 
as a posterior probability of deception or truth-telling. ESS-M also 
provides the lower-limit odds of the 1-alpha posterior credible interval 
for deception or truth-telling – indicative of the likelihood of obtaining a 
similar categorical result upon repetition of the test procedure.  

Response Features Reduction of respiration activity, electrodermal amplitude of phasic 
response, cardiovascular phasic increase in relative blood pressure. 
Can optionally include vasomotor reduction of pulse amplitude. 

CQ Selection RQs are paired with CQs according to traditional procedures used by 
field examiners for each different polygraph test format. In general, 
RQs are compared to the preceding or subsequent CQ with the 
greater change in physiological activity whenever possible, and with 
the preceding CQ when two CQs are not available.  

Numerical transformation Integer scores are assigned by comparing differences in response 
magnitude for RQ and CQ pairs. Question pairs can be used naively 
or subject to optimization coefficients to reduce scores that may occur 
due to spurious or random noise. EDA integer scores are doubled prior 
to summation, so that the structural contribution of EDA data is greater 
than for other sensors. [See Nelson, 2019.] 

Data reduction Integer scores are summed for each RQ, for all sensors, between 
charts. RQ subtotals are then summed to obtain a grand total score. 
Summation via this process means that values are available for single 
issue and multiple issue test formats.  

Likelihood function ESS likelihood functions were calculated empirically using only 
respiration, EDA and cardiovascular sensors. ESS-Multinomial 
likelihood functions are calculated mathematically using the analytic 
theory of the CQT, and available for single issue and multiple issue 
polygraph exams with 2, 3, and 4 RQs with 3, 4 or 5 charts, including 
respiration, EDA, and cardiovascular sensors, in addition to the 
optional vasomotor sensor.  Likelihoods for traditional cutscores are 
the empirical TP, TN, FP and FN rates.  

Decision rules – single issue GTR, TSR, FZR 
Decision rules – multiple issue SSR 
Comments ESS and ESS-M were introduced as manual scoring methods. 

Research publications have made use of fully automated ESS and 
ESS-M models.  

 


