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Abstract 
 

An archival sample of N=100 confirmed field polygraph exams was used to calculate 

descriptive statistics, including point estimates, to study the effect on inconclusive results and other 

metrics of test accuracy. Data were analyzed as a function of different decision rules, structural 

weighting of sensor scores and cut-scores. Decision rules included the federal-zone-rules, grand-

total-rule, subtotal-score-rule, two-stage-rules. Numerical scores were obtained through an 

automated feature extraction algorithm. Results were evaluated with both unweighted three-position 

numerical scores and after weighting the integer scores for electrodermal responses. Results are 

shown for both traditional numerical cut-scores and also using cut-scores obtained from 

multinomial reference distributions for three-position comparison question test scores with both 

weighted and unweighted electrodermal scores. Use of different decision rules had less effect with 

the multinomial cut-scores than with traditional cut-scores. Weighted EDA scores produced an 

average 49% reduction of inconclusive results across all decision rules, and the combination of 

weighted EDA scores and multinomial cut-scores reduced the occurrence of inconclusive results by 

an average of 72%. 

 

 

Introduction 

Few things are more disappointing for field polygraph examiners and referring agents than an 

inconclusive2 test results. There is little to compare with the sense of frustration when – after all the time 

and effort invested in preparing for the test, the pretest interview, target selection, question formulation, 

test data collection, and test data analysis – a test result is not statistically significant for deception or 

truth-telling. This sense of frustration is, at times, shared by some examinees – especially those who are 

innocent – who, having agreed to testing in hopes of producing test data that can serve as a basis of 

evidence to support professional conclusions about innocence or truth-telling, must necessarily be 

informed that their inconclusive test result provides no better information about truth or deception than 

was already available before 

the test. 

 
In years past, in the absence of a probabilistic view of polygraph test results, it may have been 

tempting to up-sell the capabilities of the polygraph as virtually infallible. During that era, an 

inconclusive result was at times regarded as an indication of an unskilled examiner. Behind this 

attitude or belief was likely a sincere desire among polygraph examiners to be of actual help to 

referring professionals, for whom an inconclusive test result offered little or no practical value. And 

virtually nobody wants to purchase the services of a probabilistic test for which we could offer little 

more than conjecture as to the strength of the conclusion. In the absence of an ability to realistically 

quantify the level of confidence 
 

 
1 The authors are extremely grateful to Mr. Don Krapohl and Texas DPS Captain Matt Hicks (who functioned as the action 
editor for this project) for reviewing, commenting and editing earlier drafts of this manuscript. 

 
2 To remain consistent with the terminology of the forensic sciences we have chosen to call indeterminate polygraph 
results “inconclusive” rather than the neologism “No Opinion.” 
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or margin of uncertainty for the test result, it may have been a matter of professional marketing to 

up-sell or over-sell the capabilities of the test, including unrealistic expectations for infallibility and 

the absence of inconclusive results. 

 

It may be helpful to remember that in- conclusive results are not unique to polygraph testing; 

all forensic tests are burdened with a certain proportion of inconclusive outcomes. The stated reason 

for them depends upon the forensic discipline in which the test is conducted, but in the main it is 

because the signal/ pattern/trace/sample/marker/image is inadequate or contaminated. So too is it 

with the polygraph. Even under ideal conditions, with heroic effort and with perfect examinees, pre-

test interviews, and charts there will always be some cases in which the data do not allow for a reliable 

decision. An important objective in all forensic disciplines is to minimize those occasions. 

 
Objectively, if people believed the poly- graph to be infallible then there would be no great 

difficulty in accepting a test result at face value. However, most polygraph examiners, and other 

professionals that we are aware of, would be hesitant to accept a test result at face value without 

scrutinizing the test administration, test data, and analytic result. Also, no thinking person today will 

accept the notion that polygraph is infallible or deterministic. It is well established that all scientific 

test results rely on probabilities and probability theory to quantify important phenomena that cannot 

be subject to perfect deterministic observation or direct physical measurement. Polygraph 

technologies, methodologies, and standards have all evolved along with this understanding. 

 
Presently, it is reasonably understood by most – polygraph professionals, referring agents, 

courts, legislators, scientists, members of the community, and the entertainment and news industries 

– that the polygraph test is, like other scientific tests, merely a statistical classifier intended to quantify 

a phenomenon that cannot be subject to perfect deterministic observation or direct physical 

measurement. All tests are fundamentally probabilistic. Along with any use of statistics and probability 

theory comes the potential for testing error. The practical purpose of test data analysis is often to 

achieve a categorical classification or categorical test result. But experts who possess a broader and 

more complete understanding of scientific test are aware that the actual purpose of test data analysis 

is to quantify – in some reproducible manner – the level of confidence or margin of uncertainty 

surrounding a test result. Any reasonable and intelligent use of statistical theory and statistical 

methods will include an acknowledgement of some potential for testing error, and some potential that 

test results may not achieve a required level of statistical significance. Despite this, inclusive test 

results, are still the bane of field polygraph examiners everywhere. 

 
Reducing the proportion of inconclusive results can potentially increase the effectiveness of the 

test. Inconclusive results are inversely related to utility.  Higher rates  of inconclusive results 

correspond with a lower rate of utility or usefulness. One common strategy for reducing the occurrence 

of inconclusive test results is to increase the volume of available test data by repeating the series of 

relevant and comparison questions one or two additional times, beyond the minimum three 

repetitions. Another strategy for reducing the occurrence of inconclusive results is to include 

additional independent diagnostic information, such as from a vasomotor sensor, to the traditional 

array of respiration, cardio, and electrodermal sensors. There are also other, subtler, strategies to 

reduce the occurrence of inconclusive test results, and these can include target selection, question 

formulation, and interviewing skills. 

 
In this paper we use an archival sample of confirmed criminal investigation polygraphs to show 

three additional evidence-based approaches to field practices that can reduce the occurrence of 

inconclusive test results while increasing the objectivity and statistical power of the test. The first 

among these involves polygraph decision rules. The second field practice area involves the weighting of 

electrodermal (EDA) scores when assigning Likert-type (1932) three-position scores to physiological 

response to polygraph questions. Thirdly, we show the effect of replacing traditional polygraph cut-

scores with cut-scores derived from a multinomial distribution of polygraph scores based the analytic 

theory of the polygraph test. 



Nelson, Handler 
 

 

 

 
Sample Data Method 

 

procedures can be found in publications by the Department of Defense (2006a; 2006b) and is referred to 

as the Federal Zone Rule (FZR) for the remainder of this manuscript. 

A sample of confirmed field polygraphs was obtained from an earlier study by Krapohl (2005). The 

sample data consisted of N=100 polygraph examinations that were selected randomly from an archive of 

confirmed field cases. All exams were conducted by U.S. law enforcement agencies using the Federal 

Zone Comparison (ZCT) test format (Light, 1999; Department of Defense, 2006a), for which the sequence 

of scored questions, including three relevant questions and three comparison questions, was repeated 

three times. Sample cases consisted of n=50 confirmed truthful cases and n=50 confirmed deceptive 

cases. Data for all cases consisted of recording sensors for changes in thoracic and abdominal respiration 

activity, electrodermal activity, and cardiovascular activity. 

 

Table 1 shows is an extended calculation of the sample results reported by Krapohl (2005) using 

the Federal Zone Rule (FZR) and seven-position scores, including test sensitivity or true-positive (TP) rate 

and specificity or true-negative (TN) rate, false-positive (FP) and false-negative (FN) errors, inconclusive 

(INC) results, and the unweighted average of correct decisions and inconclusive results for confirmed 

deceptive and truthful cases. Table 1 also shows the positive-predictive-value (PPV; calculated as 

TP/(TP+FP) and negative-predictive-value (NPV; calculated as TN/(TN+FN). Also shown in Table 1 is the 

detection efficiency coefficient (DEC; Kircher, Horowitz & Raskin, 1988), calculated as the Pearson 

correlation of the case status [-1, 1] and test result [-1, 0, 1]. The DEC provides a single metric that en- 

compasses correct classifications, errors and inconclusive results for both deceptive and truthful sample 

cases. 

 

Krapohl (2005) reported results using “investigative rules,” for which deceptive classifications were 

made if the grand total score equaled or exceeded a cut-score of -6, or any subtotal score equaled or 

exceeded -3. Truthful classifications were made only when the grand-total score equaled or exceeded +6 

and all subtotal scores exceed +1. All other conditions were classified as inconclusive. These 

 

Krapohl (2005) also reported results using “evidentiary rules,” for which deceptive 

classifications were made if the grand total score equaled or exceeded -6 while truthful classifications 

were made if the grand total score equaled or exceeded +4. In cases where the grand total was in the 

range from -5 to +3 the subtotal scores were used to make deceptive classifications if any subtotal 

equaled or exceeded -3. All other conditions were classified as inconclusive. The process of first using 

the grand total score and subsequently using subsequently using subtotal scores if the grand total 

is inconclusive was first described by Senter and Dollins (2003) and is referred to as the two-stage-

rule (TSR) for the remainder of this manuscript. 
 

 

Table 1. Sample results (n=100) reported by Krapohl (2005) for seven-position scores. 
 

 
 Investigative Rules / FZR Evidentiary Rules / TSR 

Sensitivity (deception) .78 .81 

Specificity (truth-telling) .62 .80 

False-negative Errors .07 .10 

False-positive Errors .09 .09 

Inconclusive-guilty .15 .09 

Inconclusive-innocent .29 .11 

Unweighted Accuracy .90 .90 

Unweighted Inconclusives .22 .10 

Positive Predictive Value .90 .90 

Negative Predictive Value .90 .89 

Detection Efficiency Coefficient .67 .74 



 

 

 

Results from Krapohl (2005), shown in Table 1, results are consistent with other studies using 

the FZR and showed that in- conclusive results are loaded for innocent persons. Krapohl showed that 

use of the seven-position scores with the TSR and evidentiary cut-scores resulted in similar 

classification accuracy, though with improved test specificity and a reduction of the inconclusive rate 

by 55%. Importantly, Krapohl used different cut-scores for the FZR and TSR, and it remains unknown 

what portion of the observed difference can be attributed to decision rules and/or to the different 

cutscores. The present analysis is an attempt to provide more information about observed differences 

in test accuracy as a function of inconclusive rates for decision rules, cut-scores and other factors. 

 

Feature Extraction and Data Reduction 

 
Sample case were scored using a three-position numerical scoring method (Bradley & Janisse, 

1981; Department of Defense, 2006b; van Herk, 1991). For each iteration of each relevant question 

and for each recording sensor, three-position numerical scores were assigned via an automated feature 

extraction algorithm that was developed using the R statistical computing language (R Core Team, 

2018). The three-position scoring method is Likert-type coding system, based on the analytic theory 

of the polygraph test (Nelson, 2015). Scores of +1, 0 and -1 were assigned to relevant and comparison 

question pairs – referred to by field polygraph examiners as analysis subtotals or “spots”. Negative 

scores were indicative of greater changes in physio- logical activity in response to relevant questions 

whereas positive scores were indicative of greater changes in physiological activity in response to 

comparison questions. Scores of 0 were assigned when there was little or no difference in response to 

relevant and comparison questions. 

 

The automated algorithm was designed to extract information about the relative amplitude of 

increase in electrodermal activity, relative increase in blood pressure, and relative suppression or 

reduction of respiration activity. These responses have been shown   to be correlated with differences 

in physiological response to relevant and comparison polygraph questions under the analytic theory 

of the comparison question polygraph test (Kircher & Raskin, 1988; Kubis, 1962; Summers, 1939) 

[see Nelson (2016) for a discussion]. The automated feature extraction algorithm performed nearly all 

traditional analysis tasks, including identification of response onset and response peak and the 

calculation of numerical differences between response peak and response onset. 

 

The automated feature extraction algorithm also selected relevant and comparison question 

pairs, such that for each repetition of the question sequences for the ZCT cases in the sample data the 

physiological responses to second and third relevant questions was paired with the physiological 

response to the preceding comparison question. For each re- cording sensor the automated algorithm 

paired the physiological responses to the first relevant question with the physiological response from 

either the preceding or subsequent comparison question by selecting the comparison question that 

produced the greater change in physiological activity. 

 

Prior to feature extraction the automated algorithm scaled the recorded physiological data for 

visualization and performed some identification and rejection of data artifacts such as deep breaths in 

respiration activity, physical movement in the cardio data, and labile electrodermal responses that were 

unrelated to or untimely with the test question. 

 

Dimensionless numerical measurements were obtained from the scaled physiological data from 

response onset to response end using a 15 second evaluation window (EW). Respiration excursion was 

measured as the mean of 1 second intervals from 0 to 14 seconds at a data rate of 30 sample per 

second, excluding 2 seconds prior to and sub- sequent to the verbal answer. Electrodermal and cardio 

responses were measured as the dimensionless difference of the maximum difference between the onset 

of a positive slope segment that began during the ROW and a subsequent peak of a positive slope segment. 

EDA and cardio response peak points were identified in the EW and were included in the extracted 

measurements if they occurred after the EW if the positive slope segment began during the ROW. 

 
Measured segments for relevant and comparison questions were combined as the R/C ratio, which 

is the extracted relevant question measurement divided by the extract- ed comparison question 

measurement. R/C ratios were logged so that they produce values that are symmetrical around a mean 
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of zero. 

 

Non-parametric integer scores were assigned to the physiological responses to analysis spots (i.e., 

relevant and comparison question pairs) using a three-position Likert (1932) type scale [+1, 0 -1]. Integer 

scores of positive sign value were assigned when the change in physiology was greater at the selected 

comparison question than the relevant question. Integer scores of negative sign value were assigned when 

the change in physiology was greater at the relevant question than the selected comparison question. 

Scores of zero sign (numerical zero) were assigned when the data were distorted from movement/activity 

artifact or were insufficient for scoring due to no response or due to a response onset prior to question 

onset, with no response onset during a defined response onset window (ROW) from question onset to five 

seconds after the verbal answer. Electrodermal and cardio responses were not used if they began during 

a .5 second latency period at question onset. 

 
Non-parametric scores are intended to capture and express general information about the 

differences in response to relevant and comparison questions but do not pro- vide information that 

can be subject to linear assumptions about the degree of difference in response. However, some 

threshold constraints were used to prevent the assignment of numerical scores for segments of data 

that produced very little difference or extreme differences in responses to relevant and comparison 

questions. Threshold constraints were determined from optimization experiments with another a 

confirmed case sample used by Nel- son (2018a) and are shown in Table 2. Integer scores were 

assigned when the logged R/C ratio was within these constraints, and no score was assigned with 

the value was less than or greater than these constraint thresholds. 

 
 

Table 2. Threshold constraints for non-parametric scores 

 
 

- Lower limit Upper limit 

Sensor Ratio Logged ratio Ratio Logged ratio 

Respiration 1.05/1.25*
 .049/.223 1.5 .406 

Electrodermal 1.05 .049 1000 6.908 

Cardio 1.05 .049 1000 6.908 
* An asymmetrical constraint 1.25 was used for the lower limit of respiration scores when 
assigning scores of + sign value. Optimization studies with other sampling data indicates that 
+ scores are more likely to be negatively correlated with truth-telling without the asymmetrical 
constraint. 

 

Data Reduction 

 
Data reduction for each of the sample cases was accomplished by summing the numerical 

scores for respiration, electrodermal and cardio sensors for all presentations of each of the relevant 

test questions. In this way, a numerical subtotal score was obtained for each of the relevant questions. 

Subtotal scores were then summed to obtain a grand total score for each of the sample cases. 

Classifications of deception and truth-telling would be made with grand total and/or subtotal scores 

according to established polygraph decision rules. 

 
Analysis 

 
Sample cases were analyzed for correct decisions, errors and inconclusive results for the 

confirmed field cases and were calculated for test sensitivity, specificity, false-negative and false-

positive errors, and inconclusive results for guilty and innocent sub-groups. In addition, the 

proportion of correct decisions was calculated for the guilty and innocent cases after excluding 

inconclusive results, along with the unweighted average of decision accuracy for the two groups. 

Positive predictive value and negative predictive values were also calculated as well as Detection 

efficiency coefficients. Accuracy indices were calculated for several conditions, including for three-

position scores using traditional numerical cut- scores, after weighting the EDA scores, and using 

cut-scores selected from a multinomial reference distribution of weighted and unweighted three-

position scores (Nelson, 2017, Nelson, 2018b). 



 

 

Results 

Results were tabulated for three-position scores using different decision rules and traditional 

numerical cut-scores. Results were also tabulated after doubling the value of all electrodermal scores. 

Finally, results were tabulated using cut-scores that were selected from multinomial reference 

distributions for both weighted three-position and unweighted EDA scores. 

 
Decision Rules 

 
Previous studies by Senter & Dollins (2003) have suggested that the choice of decision rules 

may play an important role in the effectiveness of polygraph classifications of deception and truth-

telling. [See Nelson (2018c) for a discussion of different decision rules]. Table 3 shows the results three-

position numerical scores for the n=100 confirmed field cases. Results are shown using the Federal 

ZCT Rule (FZR) with traditional numerical cut-scores (described earlier).  Results  for this study were 

also calculated using the Grand-Total Rule (GTR). Use of the GTR is a matter of summing all numerical 

scores and comparing the result to numerical cut-scores for deception or truth-telling (traditionally +6 

and -6). Results were also calculated using the subtotal score rule (SSR), for which the lowest question 

subtotal (strongest indication of deception) is compared to numerical cut-scores for truth-telling 

(traditionally +3 or greater for all subtotals) or deception (traditionally -3 or lower for any subtotal). 

Also shown in Table 3 are of the sample cases using automated feature extraction and score 

assignment using the TSR with both traditional numerical cut-scores and the evidentiary cut-scores 

pro- posed by Krapohl (2005), as described earlier. 

 

 

Table 3. Sample results for decision rules with three-position scores and traditional cut-scores 
(n=100). 

 
 

 FZR GTR SSR TSR*
 EDR/TSR**

 

Sensitivity (deception) .80 .56 .80 .80 .80 

Specificity (truth-telling) .32 .32 .06 .32 .48 

False-negative Errors <.01 <.01 <.01 <.01 <.01 

False-positive Errors .10 <.01 .10 .10 .10 

Inconclusive-guilty .20 .44 .20 .20 .20 

Inconclusive-innocent .58 .68 .84 .58 .42 

Unweighted Accuracy .88 >.99 .69 .88 .91 

Unweighted Inconclusive rate .39 .56 .52 .39 .31 

Positive Predictive Value .89 >.99 .89 .89 .89 

Negative Predictive Value >.99 >.99 .86 >.99 >.99 

Detection Efficiency Coefficient .79 .67 .79 .76 .82 
* Results with the TSR are shown using the traditional numerical cut-scores. 

 
** For comparison with Table 1, these evidentiary decision rules (EDR) results with the TSR are shown using asymmetrical cut-scores using by 
Krapohl (2005). 

 

Test sensitivity in Table 3 is similar to that in Table 1, though specificity rates are lower for all 

decision rules. PPV and NPV for the three-position scores were greater than the results in Table 1, along 

with generally higher rates of inconclusive results. FN errors for the automated three-position scores was 

lower than in Table1. DEC was also increased for the FZR and TSR, and this can be attributed to the 

observed reduction in FN errors. It possible that these differences are due to the use of three-position vs 

seven-position numerical scores, though it is unknown what differences may be due to the use of 

automated feature extraction vs visual/subjective feature extraction. 

 

PPV and NPV were highest for the GTR, though the inconclusive rate was also greatest for this 

decision rule. Light (1999) argued the rate of inconclusive cases for the GTR was un- acceptable for law 

enforcement use. However, the Light study is limited in scope – involving only confirmed guilty cases – 

and Table 3 shows that inconclusive rates are loaded on innocent cases. Also, Light did not include an 

evaluation of FP errors or the effectiveness of different numerical cut-scores. Inconclusive results for 
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guilty cases in Table 3 are greater than Table 1, and this is most likely attributed to differences in seven-

position and three-position scores. 

 

In the present study, using three-position scores and automated feature extraction, it is unclear 

whether the TSR provides any real advantage – in terms of classification accuracy – over the FZR. 

Results shown in Table 3 indicate a reduction of inconclusive results for innocent cases as a 

result of improved numerical cut-scores with the TSR. DEC was greatest for the TSR with the 

improved numerical cut- scores. This suggests the possibility that traditional numerical cut-

scores for grand-total scores are inefficient for the reduced three-position scale. 
 

Weighted Electrodermal Scores 

 
Several publications have suggested that EDA data account for a larger portion   of the 

diagnostic variance in test scores (Ansley & Krapohl, 2000; Harris, Horner & McQuarrie, 2000; Harris 

& Olson, 1994; Kircher, 1981, 1983; Kircher, Kristjianson, Gardner & Webb, 2005; Kircher & Raskin, 

1988; Krapohl & McManus, 1999; Nelson, Krapohl & Handler, 2008; Raskin, Kircher, Honts & 

Horowitz, 1988) and contribute more information  to effective conclusions about deception or truth-

telling compared to the other recording sensors. To observe the differences in sample results with 

the three-position scores, EDA scores were doubled in value in the manner previously described by 

Krapohl and McManus (1999). Table 4 shows the sample results after weighting the electrodermal 

scores. 

 

Table 4. Sample results for decision rules with n=100 confirmed field cases with traditional 
cut-scores and weighted electrodermal scores. 

 
 

Specificity FZR GTR SSR TSR*
 EDR/TSR**

 

Sensitivity (deception) .92 .66 .92 .92 .92 

 (truth-telling) .52 .54 .16 .54 .68 

False-negative Errors <.01 <.01 <.01 <.01 .02 

False-positive Errors .24 <.01 .24 .22 .14 

Inconclusive-guilty .08 .34 .08 .08 .06 

Inconclusive-innocent .24 .46 .60 .24 .18 

Unweighted Accuracy .84 >.99 .70 .86 .90 

Unweighted Inconclusives .16 .40 .34 .16 .12 

Positive Predictive Value .79 >.99 .79 .81 .87 

Negative Predictive Value >.99 >.99 >.99 >.99 .97 

Detection Efficiency Coefficient .87 .78 .86 .88 .90 

* Results with the TSR are shown using the traditional numerical cut-scores. 

 
** For comparison with Table 1, these evidentiary decision rules (EDR) results with the TSR are shown using asymmetrical cut-scores using by 
Krapohl (2005). 

 
 

Weighting the EDA scores more than the other sensor score increased test sensitivity and 

specificity and reduced the occurrence of inconclusive results by 59% for the FZR, 29% for the GTR, 

and 35% for the SSR. The reduction of inconclusive results was 59% for the TSR with traditional cut-

scores and 61% for the TSR using cut-scores that were suggested as optimal for evidentiary exams. 

The reduction of inconclusive results was greater for innocent cases than for guilty cases for all 

decision rules. 

 
The GTR provided the greatest overall classification accuracy, though FN errors were low for all 

decision rules. The most obvious effect from weighting the EDA scores in Table 4, compared to Table 

3, was a reduction of inconclusive results, along with increases in both test sensitivity to deception 

and specificity to truth-telling. The reduction of inconclusive results was greatest for the confirmed 

innocent cases. Interestingly, PPV was reduced for all models except the GTR which produced lower 

FN and FP error rates than other decision rules. DEC was improved for all decision rules and was 



 

 

greatest for the TSR with improved cut-scores. This suggests that the selection of cut-scores may be 

an important consideration in the management and reduction of classification errors or inconclusive 

results. 

 

Multinomial Cut-Scores 

Multinomial Cut-Scores with Weighted Three-Position Scores 

 

Weighted three-position scores were evaluated using cut-scores selected from multinomial 

reference distributions described by Nelson (2017). [See Nelson (2018b) for a discussion of how to use 

the multinomial reference distributions.] Multinomial cut-scores for weighted three-position of event-

specific poly- graphs with three relevant questions, were as follows: grand total >= +3 for truthful 

classifications or <= -3 for deceptive classifications. Deceptive classifications were made using the 

subtotal scores when the grand total score was inconclusive if any subtotal score <= -7. The cut-score 

for subtotal scores was determined using a statistical correction for multiplicity effects to avoid the 

potential inflation of FP errors when using multiple subtotal scores for deceptive classifications. 

Results are shown in Table 5 for the combination of weighted EDA scores and multinomial cut-scores. 

 
 

Table 5. Sample results (n=100) using weighted three-position scores with multinomial cut- 
scores. 

 
 

 FZR GTR SSR TSR 

Sensitivity (deception) .92 .88 .92 .92 

Specificity (truth-telling) .80 .80 .34 .80 

False-negative Errors .04 .04 .02 .04 

False-positive Errors .08 .06 .24 .08 

Inconclusive-guilty .04 .08 .06 .04 

Inconclusive-innocent .12 .14 .42 .12 

Unweighted Accuracy .93 .94 .78 .93 

Unweighted Inconclusives .08 .11 .24 .08 

Positive Predictive Value .92 .94 .79 .92 

Negative Predictive Value .95 .95 .94 .95 

Detection Efficiency Coefficient .94 .94 .85 .94 

 

Use of multinomial cut-scores further improved test sensitivity to deception  for the GTR, and 

improved test specificity to truth-telling for the FZR, GTR, SSR and TSR. Compared to the use of weighted 

electrodermal scores with traditional numerical cut- scores the multinomial cut-scores produced a 

reduction in inconclusive results by 50% for the FZR, 73% for the GTR, 29% for the SSR and 33% for the 

TSR. DECs for the multinomial cut-scores were consistently greater than for the traditional numerical 

cut-scores. 

 

Not surprisingly, the SSR showed high sensitivity to deception, though not greater than any of the 

other decision rules, along with weaker specificity to truth-telling and a higher inconclusive rate that was 

loaded on innocent cases. Overall decision accuracy and DEC for the SSR was lower and inconclusive 

rates were higher than for other decision rules that included the use of the grand total score. This 

difference may be attributable to inherent multiplicity when using subtotal scores, and also to the smaller 

volume of information available to support decisions based on individual subtotal scores. 

 

Multinomial Cut-Scores with Unweighted Three-Position Scores 

 

Three-position scores were also evaluated using cut-scores obtained from a multinomial reference 

distribution for polygraph exams with three relevant questions and three to five charts. Multinomial cut-

scores for the unweighted three-position scores were as follows: grand-total >= +2 for truthful 

classifications or <= -2 for deceptive classifications. Deceptive classifications were made using the 
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subtotal scores when the grand-total score was inconclusive if any subtotal score <= -6. The cut-score for 

subtotal scores was determined using a statistical correction for multiplicity effects to avoid the potential 

inflation of FP errors when using multiple subtotal scores for deceptive classifications. Results are shown 

in Table 6 for the combination of weighted EDA scores and multinomial cut-scores. 

 
Table 6. Sample results (n=100) using unweighted three-position scores with multinomial cut- 
scores. 

 
 

 FZR GTR SSR TSR 

Sensitivity (deception) .88 .86 .80 .88 

Specificity (truth-telling) .78 .76 .30 .78 

False-negative Errors .04 .04 .02 .04 

False-positive Errors .04 .04 .10 .04 

Inconclusive-guilty .08 .10 .18 .08 

Inconclusive-innocent .20 .20 .60 .20 

Unweighted Accuracy .95 .95 .86 .95 

Unweighted Inconclusives .14 .15 .39 .14 

Positive Predictive Value .96 .96 .89 .96 

Negative Predictive Value .95 .95 .94 .95 

Detection Efficiency Coefficient .91 .90 .79 .91 

 

Use of multinomial cut-scores improved the effectiveness of classifications with the unweighted 

three-position scores. Classification accuracy with the three-position scores using multinomial cut-

scores was similar to that of the weighted multinomial model. However, both sensitivity and specificity 

were reduced slightly for the unweighted three-position scores. Compared to the weighted model the 

inconclusive rate for unweighted three-position scores increased by an average of 62% for all decision 

rules. The increase in inconclusive results was loaded on innocent cases. The unweighted three 

position scores also produced fewer false-positive errors. These differences can appear substantial 

when described as a percentage of change. The SSR underperformed relative to the other decision 

rules, with weaker test specificity and higher inconclusive results. Overall detection accuracy for the 

multinomial three-position model was high, though did not equal the effective- ness of the weighted 

three-position model. 
 

Summary 

This project involved the calculation of descriptive statistics for test accuracy, error and 

inconclusive rates as a function of different decision rules, structural weighting of sensor scores, and 

cut-scores. Results show that a number of procedural and field practice decision can have an 

important impact on the criterion accuracy of polygraph test results. Although PPV and NPV were 

consistently high for most conditions, differences in the rate of inconclusive results can be observed 

and this can directly affect the power of the test in terms of test sensitivity, specificity and error rates. 

 

Results for the three-position scores, shown in Table 3, were similar for the FZR and TSR. 

However, there was a small reduction of inconclusive results, along with a corresponding increase in 

test specificity when using the TSR with cut-scores that were suggested as more optimal for evidentiary 

polygraph testing. Weighting the EDA scores, shown in Table 4, more than the other sensor scores 

increased test sensitivity and specificity, and reduced the occurrence of inconclusive results and 

average of 49%, compared to results from un- weighted three-position scores, for all decision rules. 

Use of multinomial cut-scores produced further reductions in the occurrence of inconclusive results 

along with further increases in DECs for all decision rules. 

 

The combination of weighted EDA scores and multinomial cut-scores reduced the occurrence 

of inconclusive results by an average of 72% across all decision rules, compared to unweighted three-

position scores and traditional numerical cut-scores. The reduction in inconclusive results was 

greatest for the GTR, which does not make use of subtotal scores, and for which the rate of inconclusive 

results with multinomial cut-scores was closer to that of other decision rules. 



 

 

 

Field practitioners have provided anecdotal information suggesting that their observed rates of 

inconclusive rates are inconsistent with, and lower than, those in published studies. This is 

understandable because field practitioners, working at the level of individual cases, may be 

ethically justified in engaging in practices intended to resolve or reduce the occurrence of 
inconclusive results (e.g., con- ducting additional repetitions of the question sequence, or 

repeating an examination). In contrast researchers who work with samples of cases would be 

vulnerable to suggestions of manipulating a research outcome if they were to engage in such 

actions at level of some, though not all, individual cases. The result is that inconclusive rates 

in field practice may continue to be lower than those reported in published studies. 

 
The most effective model in this analysis – illustrated by sensitivity, specificity, in- conclusive and 

DECs in Table 5 – was with the TSR using weighted EDA using multinomial cut-scores. Interestingly, 

accuracies for the FZR, and TSR were effectively identical for the weighted three-position scores with 

multinomial cut-scores, suggesting that the selection of cut-scores may be more important than the 

decision rules. Similarity of the DEC for the GTR, FZR and TSR provide further indication of this, and 

suggest that some previously re- ported conclusions about the GTR may have been unduly influenced by 

reliance on traditional numerical cut-scores that were inefficient for grand total scores. 

 
This project, like all projects, is not without some limitations. The most obvious limitation is the 

small sample size (N=100). Though moderately sized for a project of this type, it is axiomatic that larger 

sample sizes are more easily viewed as comfortably approximating the population. However, sample size 

is not the only, or primary, consideration when attempting to understand the representativeness of a 

sample – for which random selection may be more important. This project, involving an archival sample, 

is necessarily precluded from any influence due to sampling methodology that is not presently expressed 

in the sampling data. It is also, necessarily de- pendent upon assumptions that the sampling data are in 

some way informative. 

 
Another important limitation of this project is that no tests of statistical significance were 

completed. This was by design, as it was hoped that a descriptive approach to the statistical 

analysis might be of greater practical value to polygraph field examiners and program managers 

who may be more familiar and conversant with field practice policy decisions than multiple 

ANOVA. Future research should include a more complete analysis of the variance of the related 

effect sizes for polygraph decision rules, structural weighting coefficients for sensor scores, and 

cut-scores. Also, no statistical confidence intervals were included in this document, though 
informed readers can easily use a number of methods to calculate the confidence intervals of 

interest. 

 
This project involved only a field sample of confirmed criminal investigation (event-specific) 

polygraphs and did not include a sample of multiple issue screening polygraphs. We suggest that 

some cautious generalization of these results is still in order. This is because of practical and 

important difference between event-specific diagnostic polygraphs and screening polygraphs that 

involve assumptions about the independence of multiple-is- sue screening questions. These 

assumptions are at best convenience assumptions because they assume independence in that 

different test items have no shared source of response variance – that whatever could influence 

responses to each item could have not affected any other item. As it happens, all polygraph questions 

within any examination will always have some shared source of response variance– in the form of the 

attention of the examinee. Both event-specific diagnostic and multiple-issue screening polygraphs 

will also be influenced by statistical multiplicity effects as determined by the selection of polygraph 

decision rules. For these reasons, a similar pattern of results can be expected for polygraph screening 

exams as is observed with this sample data. 

 

Astute readers will note that this project does not attempt to discuss all possible methods of 

reducing inconclusive rates and improving polygraph test effectiveness. Some of those other methods 

may include: interviewing approaches, quality assurance activities, greater use of automation, use 

of the vasomotor sensor, recording additional charts, clarification of operational definitions, use of 

interview route-maps, refined target selection, and/or improvements in question formulation. All of 

these should remain as areas for continued research and development. 

 



Nelson, Handler 
 

Results from this study point clearly to the fact that traditional numerical cut-scores are 

effective at producing a low FN rate but are burdened with unnecessarily weak test specificity to truth-

telling and un-necessarily high rates of inconclusive results. An interesting observation that can be 

made about these results is that there was no advantage to the use of the SSR in terms of increased 

test sensitivity to deception, when compared to the other decision rules. The FN rate for the SSR was 

equal to that of the other decision rules for when using traditional cut-scores and was reduced from 

that of the TSR and FZR by 50% (.02 / .04), while the FP rate increased by a factor of 3 (.24 / .08) for 

the SSR. The inconclusive rate was larger for the SSR than for the FZR and TSR and was loaded on 

innocent cases. As shown in Table 3, the SSR was especially weak with unweighted three-position 

scores and traditional numerical cut-scores. The practical implication of these observations is that it 

may be difficult to justify the use of the SSR outside of polygraph screening con- texts, where it some 

over-prediction may be desirable or intended – and difficult to justfy the use of the SSR when using 

unweighted score and traditional cut-scores. 

 
These results show clearly that optimization of field practices in each of these areas – decision 

rules, weighting of EDA scores and the selection of cut-scores – can provide important advantages to 

many, including polygraph field examiners, program managers, courts, legislators, researchers, and 

polygraph examinees. Further exploration is needed to better understand the utility functions in terms 

of economic values and operational costs associated with sensitivity, specificity, FN and FP errors, 

and inconclusive results rates. Greater reliance on statistical measurement theory can permit 

polygraph programs to refine their policies to better achieve their mission objectives and goals. 

 
Inconclusive test results are likely to persist as a bane to polygraph field examiners, program 

managers, and others – including polygraph examinees. The availability of evidence-based procedural 

solutions that can reliably reduce the occurrence of inconclusive test results appears to be worthy of 

further attention and consideration. 
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