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Abstract

This project involved the use of a balanced sample of n=36 field polygraph exams and a 
simple genetic algorithm to compute a weighting function for polygraph signals that would optimize 
the classification of deception and truth-telling. A genetic algorithm is a simple form of machine-
learning that can be used to address complex problems in optimization, classification, search, and 
other data-analytic contexts. EDA accounted for, or explained, 54% of the diagnostic variance in the 
sample data. Cardiovascular activity accounted for 34% of the difference variance in the guilty and 
innocent sample sampling data. The weighting coefficient for respiration was 12%. This weighting 
function is somewhat similar to other weighting functions in the polygraph literature. Although this 
study contributes little additional information to the published knowledge base, in addition to being 
computationally intensive and involving a small sample size, results of this study demonstrate the 
potential use for advanced computing techniques in polygraph research. Computing technology is 
more abundant and less expensive than in the past. Continued interest is indicated for both weight-
ed EDA solutions, and the use of computational machine learning methods in polygraph research.

Polygraph testing, although often re-
ferred to conveniently as a lie detector, does 
not detect or measure lies, but instead relies 
on data that is primarily autonomic.  These 
include respiration movement, electrodermal 
activity, cardiovascular activity and some-
times vasomotor activity. Analysis of poly-
graph data involves a series of functions simi-
lar to other data analytic contexts, including 
feature extraction, numerical transformation 
and data reduction, the use of some form of 
likelihood function, and structured decision 
rules to parse a categorical test result from the 
numerical and probabilistic data. An impor-
tant challenge of any multivariate analysis is 
the calculation, or optimization, of a statistical 
function that specifies an optimal combina-
tion of the different sources of data that will 
achieve a desired objective.

Optimization refers to the calculation 
or computation of a best attainable solution. 
Optimization is a data-analytic approach to 
solution finding, as opposed to solution-find-
ing through conjecture or anecdotal example, 
subjective opinion, or even expert opinion 

(equivalent to subjective opinion and con-
jecture). One way to determine the optimal 
structural combination of sensor data will be 
to test every possible combination. However, 
attempting to test every possible solution will 
be an expensive and time-consuming expedi-
tion. The number of possible weighting coef-
ficients or structural combinations of respira-
tion, EDA, and cardiovascular is potentially 
infinite. To gain insight into the possibilities, if 
weighting coefficients are regarded as normal-
ized decimal proportions (summing to 1) there 
are 166,650 possible combination using only 
two decimals of precision. With the addition of 
a fourth recording sensor (i.e., vasomotor), the 
number of possible structural functions will be 
4,082,925. Three decimals of precision would 
increase the possible combinations exponen-
tially, though with potentially little benefit. 

Another method to optimize the struc-
tural combination of respiration, EDA, and 
cardiovascular activity (or any combination of 
response features) would be to use traditional 
statistical methods such as linear discriminate 
analysis, linear regression or logistic regres-
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sion. A more modern approach to optimization 
and classification problems (also search prob-
lems, and prediction problems) is to use sta-
tistical learning theory (Hastie, Tibshirani & 
Friedman, 2009; James, Witten, Hastie & Tib-
shirani, 2013;), also referred to as machine-
learning (ML) and artificial-intelligence (AI). 

An important difference between AI 
and the traditional statistical approach is that 
the traditional approach involves a researcher 
or scientist who develops a hypothesis (pos-
sible solution) about a possible answer to a re-
search question. The researcher then designs 
an experiment to falsify the hypothesis or to 
compare the hypothesis and null hypothesis 
to determine which is more consistent with 
the observed data. The AI approach allows a 
computing machine to both suggest and test 
numerous possible hypotheses. Thus, the ma-
chine is said to “learn” a solution from its ex-
perience with the data. 

This project involved the use of a ge-
netic algorithm (Goldberg, 1989; Mitchel, 
1996) to compute structural combinations of 
respiration, EDA and cardiovascular activity. 
The optimization question is this: what is the 
best structural weighting for data from each 
of the polygraph sensors? In this context, best 
is defined as achieves the greatest number of 
correct decisions when classifying the sample 
cases as deceptive or truthful.

Data

Data consisted of a small sample of 
n=18 confirmed deceptive and n=18 confirmed 
truthful polygraph cases. The sample cases 
were conducted with a diagnostic polygraph 
format with two relevant questions. Cases 
were conducted by a large metropolitan po-
lice agency, consisted of respiration, EDA and 
cardiovascular activity data, and were con-
firmed through a combination of confession 
and extra-polygraphic evidence. Examinees 
were criminal suspects who authorized the 
examination, including the use of the data in 
anonymous form for research, program evalu-
ation instruction and quality control.  All ex-
ams consisted of three iterations (three charts) 
of the sequence of the test questions. All ex-
aminations consisted of sensors for thoracic 
and abdominal respiration movement, EDA, 

cardiovascular activity and an activity sensor. 

The two relevant question diagnostic 
format is used for event-specific diagnostic 
polygraphs. It includes two relevant questions 
and three comparison questions, along with 
other procedural questions.  When using the 
two relevant question diagnostic polygraph 
format, each relevant question is evaluated 
with the preceding or subsequent compari-
son question depending on which comparison 
question has produced the greater change in 
physiological activity. All exams were conduct-
ed and recorded using the Lafayette LX4000 
polygraph instrument.  

Data were exported from the proprie-
tary binary file format to the NCCA ASCII text 
format using a data sampling rate of 30 sam-
ples per second. Data were then imported to 
the R Language and Environment for Statisti-
cal Computing (R Core Team, 2019) for analy-
sis. All feature extraction, numerical transfor-
mation, data reduction, likelihood calculations 
and decision rules were executed automati-
cally in the R computing environment. The re-
spiratory feature of interest was the reduction 
of respiration activity in response to the test 
stimuli, associated with attempts to conceal 
one’s deception. The EDA feature of interest 
was the change in y-axis value from an on-
set of a positive slope segment to the peak of 
reaction, associated with increased activity in 
the sympathetic division of the autonomic ner-
vous system. For cardiovascular activity data 
the feature of interest was the change in y-axis 
value, also associated with relative blood pres-
sure and activity in the autonomic nervous 
system. 

Feature extraction was performed for 
each sensor for each relevant question (RQ) 
and each comparison question (CQ). Respira-
tion data was measured as the mean of respi-
ration line excursion (RLE; the absolute differ-
ence of each subsequent respiration sample) 
for a one-second moving average from stimu-
lus onset to 15 seconds post stimulus onset 
excluding the data from one second before to 
one second after the recorded verbal answer. 
This measurement is thought to be more ro-
bust against distortions at the point of verbal 
answer and is not influenced by the length of 
the 15 second evaluation window – effects with 
different measurement periods will have a 
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similar metric. EDA reactions were measured 
as the onset of a positive slope segment during 
a response onset window (ROW) from .5 sec-
onds after stimulus onset to 5 seconds after 
the verbal answer to the greatest y-axis (verti-
cal) distance to subsequent peak of reaction 
(onset of negative slope) within evaluation win-
dow (EW) from stimulus onset to 15 seconds 
after stimulus onset. If there was no response 
onset during the ROW a response onset was 
inferred statistically during positive slope seg-
ments using a z-test of the variance of one sec-
ond mean difference of each subsequent EDA 
sample. A response onset was imputed if the 
difference in variance for a two, one-second 
windows exceeded the alpha = .001 bound-
ary. This can be visualized as a substantial in-
crease in positive slope angle within a positive 
slope segment during the ROW. Cardiovascu-
lar activity was extracted by first calculating 
the mean of all cardio sensor samples.

This can be thought of, and plotted, as 
the mid-line between the systolic and diastolic 
peaks. Cardiovascular activity changes were 
then extracted, using the cardio mid-line, us-
ing a procedure similar to the one for the EDA 
data. 

All measurement values were dimen-
sionless. That is, they were not indexed to any 
physical quantity, SI unit , or derived mea-
surement value. Dimensionless values were 
then transformed to objective ordinal rank 
values using a three-point coding scheme [-1, 
0, +1] familiar to field polygraph examiners. 
For each of the recording sensors, extracted 
values for each presentation of each RQ was 
compared to the preceding or subsequent CQ 
depending on which CQ produced the greater 
change in physiological activity. Scores were 
coded as +1 if the change in physiological ac-
tivity was greater at the CQ and were coded 
as -1 if the change in physiological activity 
was greater at the RQ. Tied values (tied ranks) 
were coded as 0. For EDA and cardiovascular 
activity, a greater extracted value was indica-
tive of a greater change in physiology. Howev-

er, because the respiratory feature of interest 
involved the reduction of respiration activity, 
sign values were inverted so that smaller ex-
tracted values were interpreted as a greater 
change in physiological activity. 

Non-parametric rank values were 
then reduced to subtotal scores for each RQ 
through summation. Subtotal scores were 
then summed to achieve a grand total score 
for each exam. The analytic theory of the poly-
graph test postulates that greater changes in 
physiological activity are loaded at different 
types of test stimuli as a function of decep-
tion and truth-telling in response to relevant 
target stimuli (Nelson, 2015, 2016). Under this 
theory, grand total scores of this type can be 
expected to be greater than zero for innocent 
examinees and less than zero for guilty ex-
aminees. The genetic algorithm was used to 
determine the weighting coefficients that can 
be assigned to scores from each of the record-
ing sensors to maximize the number of correct 
classifications.

Analysis

A genetic algorithm can be thought of 
as a Monte Carlo method, involving the use of 
random numbers to create numerous possible 
solutions to a question or analytic problem. 
[See Eckhardt (1987), Metropolis, (1987), and 
Metropolis and Ulam (1949) for more informa-
tion on Monte Carlo methods]. A genetic al-
gorithm consists of simple rules such as the 
following:

1. Creation of numerous (say, m=1000) 
random possible solutions for the 
structural weighting of respiration, 
EDA and cardiovascular activity data,

2. Testing the effects of each possible 
solution with all of the sample cases,

3. Survival of the best solutions (natu-
ral selection) – discard the 50% that 
performs weakest and keep the 50% 
that achieves the best classification,

 1 International System of Units (French: Système international d’unités, abreviated as SI). SI base units include the 
following: the meter as a measurement of length or distance, the kilogram as a unit of mass, the second as a unit of time, 
the ampere as a unit of electric current, the kelvin as a unit of temperature, the candela as a unit for luminosity, and 
the mole as a unit for the quantity of a substance. All other measurement units are derived from these SI base units. 
Measurement of any quantity requires both a physical quantity to measure and a defined unit of measurement
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4. Split each of the surviving solutions 
into two parts and randomly connect 
them (recombination) to make a new 
iteration of m possible solutions for the 
structural weighting of the sensor data 
– now informed by the previous experi-
ence,

5. Introduce random variation (muta-
tion) to a small portion of the new so-
lutions – to potentially find better so-
lutions that were not included in the 
previous solutions,

6. Repeat steps 2-5 a large number of 
times,

7. Stop at some point – either after a 
specified number of iterations (say, 
30,000), or in response to the achieve-
ment of a stated objective (e.g. a de-
sired level of accuracy), or when the 
structural model stops improving, and 
finally,

8. Choose the structural solution that 
achieves the greatest effect size

Results 

The genetic algorithm used objective 
integer-level rank order input data and pro-
duced the weighting function shown in Table 
1. EDA accounted for or explained over half 
of the diagnostic variance in the sample data. 
Cardiovascular activity accounted for approxi-
mately one-third of the difference between the 
guilty and innocent sample sampling data. 
Respiration data explained slightly over 10% 
of the diagnostic variance. This weighting 
function is somewhat similar to other weight-
ing functions in the polygraph literature, in-
cluding the discriminate function reported by 
Nelson, Krapohl and Handler (2008) in the 
development of the Objective Scoring System 
Version-3, also shown in Table 1.

Discussion

This project involved the use of a bal-
anced sample of n=36 field polygraph exams 
and a simple genetic algorithm to compute a 
weighting function for polygraph signals that 

would optimize the classification of decep-
tion and truth-telling. A genetic algorithm, 
and other ML techniques, can achieve a very 
close approximation of an optimal solution 
with only a few thousand (sometimes many 
thousand) iterations. Response features in 
this study were coded with an objective rank 
method using positive and negative values [-1, 
0, +1] by comparing responses to relevant and 
comparison stimuli. Input data were inten-
tionally naive as to the relative importance of 
the data from different recording sensors, and 
the algorithm output is a weighting function 
that will optimize the diagnostic variance of 
the extracted data.

EDA data accounted for over 50% of 
the variance while cardiovascular data ac-
counted for approximately 1/3 of the diagnos-
tic variance. Respiration data accounted for 
the smallest portion of diagnostic variance. 
This weighting coefficients are similar to other 
published information. Some manual scoring 
protocols approximate this weighting function 
by doubling EDA scores.

The procedures in this study differ 
from those commonly used scoring in field 
polygraph programs, in which manual/visual 
feature extraction continues to be a dominant 
method for the interpretation of polygraph test 

Table 1. Weighting function.
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data. It also differs from most studies on auto-
mated algorithm development in its use of or-
dinal integer-level numerical coding. Results 
from this study add additional confirmation 
to existing knowledge on the relative impor-
tance of polygraph signals, and may be helpful 
to better understand polygraph scoring meth-
ods such methods such as the OSS (Krapohl, 
2002; Krapohl & McManus, 1999) and ESS 
(Nelson, Krapohl & Handler, 2008; Nelson et 
al., 2011; Nelson 2017). 

Limitations of this project include the 
small sample size, and the limited information 
available about the case confirmation. Despite 
the sample size, results from this study ap-
pear to be consistent with other information 
on the structural weighting of polygraph sig-
nals. Another, limitation of this project, re-
lated to the small sample size, is the absence 
of a hold-out sample. No attempt was made, 
during this project, to test the effectiveness of 
the weighting function with other data. Also, 
no attempt was made to test the effectiveness 
of the weighting function with the study input 
data, as doing so would incur a risk of over-fit-
ting a conclusion with the small input sample, 
and thereby overestimating its effectiveness. 
Another potential limitation, related to the use 
of Monte Carlo methods with small sample siz-
es, is that replication of these results may be 
subject to both sampling variation and Monte 
Carlo variation. This limitation is mitigated by 

the results of other studies on signal weighting 
in manual scoring methods – such as those 
already cited, the one by Nelson and Handler 
(2018) – that demonstrate the effects of weight-
ing the EDA data more than the other sensor 
data. A final limitation of this study is that it is 
computationally intensive. However, comput-
ing power is much more abundant and much 
less expensive than in the past. Thoughtful 
use of computing and analytic technologies 
can help to improve and advance the science 
and field practice of polygraphic credibility as-
sessment testing.  

In consideration of the volume of ex-
isting information, results of this study are 
not surprising, and the results of this study 
contribute little new knowledge to the science 
and field practice of polygraph testing. Optimi-
zation of respiration, EDA and cardiovascular 
activity has previously been demonstrated us-
ing a variety of methods, including logistic re-
gression and discriminate analysis and other 
methods. Monte Carlo methods have been de-
scribed in previous polygraph studies. These 
results are interesting because they serve to 
add further confirmation of extant knowledge 
regarding polygraph signals, and it introduces 
and demonstrates the potential use of ML/AI 
techniques in polygraph studies. Continued 
interest is indicated for both weighted EDA 
solutions, and the use of computational ma-
chine learning methods in polygraph research. 
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