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Abstract 
 
Scoring and interpretation of CQT data has progressed from subjective visual interpretation to the use of structured 
feature extraction methods and analytic models that make use of statistical decision methods. Empirical reference 
distributions are now available for a variety of comparison question polygraph test formats and numerical scoring 
methods. However, no previously published description could be found for a theoretical reference distribution for 
CQT scores. Theoretical reference distributions are an important aspect of all areas of science because, as the name 
suggests, they depend fundamentally on a coherent and practical understanding of the underlying theoretical basis 
such that it can be expressed mathematically. Theoretical distributions are calculated from facts or assumptions that 
are subject to logical mathematical proof. Theoretical distributions can be used to make inferences about empirical 
data, and can also be useful as a likelihood function for Bayesian analysis. An advantage of the theoretical distribution 
and a Bayesian approach is that the replacement or addition of evaluation features and recording sensors can be a 
simple matter when naïve assumptions are made. Multinomial reference distributions for CQT scores are calculated 
under the null hypothesis to the analytic theory of the polygraph and the CQT, and the results from closed form 
calculations were compared graphically to a Monte Carlo simulation. A description of the calculation of the 
multinomial reference distributions is provided for replication and for readers who wish to develop their 
understanding of, and intuition for, multinomial distributions. Reference tables for random discrete uniform 
multinomial distributions for the variety of CQT formats are provided in appendices. 
  
  

Introduction 
 
A combinatoric3 solution is described herein for the computation of multinomial4 statistical reference distributions5 
for empirical scoring system6 (ESS) scores for comparison question test (CQT) data. Availability of a theoretical 
referenced distribution for the CQT can help to advance the science of the polygraph and credibility assessment 
testing through the comparison of real world observations with expected results as defined by a mathematical and 
statistical model. In addition to the availability of empirical data and empirical reference distributions, theoretical 
reference distributions help to understand the validity of an area of scientific theory, and can help to better 
understand and better interpret empirical observations and empirical data. 
 
Use of statistical reference distributions to interpret polygraph data was first suggested by Barland (1985) who 
described   a Gaussian Gaussian signal discrimination model (Wickens, 1991; 2002), though this was largely unnoticed 
until the introduction 
  
of the Objective Scoring System (OSS; Krapohl & McManus, 1999; Krapohl, 2002) and the later Empirical Scoring 
System (ESS; Nelson, Krapohl & Handler, 2008; Nelson et al., 2011). Empirical reference distributions were published 
by Nelson and Handler (2015) for all comparison question polygraph formats for which data was included in the met 
analytic survey by the American Polygraph Association (2011). Although empirical reference distributions are 
becoming more widely used by polygraph field examiners in recent years, no published description exists for the 
calculation of a theoretical distribution for CQT scores. 
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Use of statistical reference distributions to interpret polygraph data was first suggested by Barland (1985) who 
described   a Gaussian Gaussian signal discrimination model (Wickens, 1991; 2002), though this was largely unnoticed 
until the introduction of the Objective Scoring System (OSS; Krapohl & McManus, 1999; Krapohl, 2002) and the later 
Empirical Scoring System (ESS; Nelson, Krapohl & Handler, 2008; Nelson et al., 2011). Empirical reference 
distributions were published by Nelson and Handler (2015) for all comparison question polygraph formats for which 
data was included in the metaanalytic survey by the American Polygraph Association (2011). Although empirical 
reference distributions are becoming more widely used by polygraph field examiners in recent years, no published 
description exists for the calculation of a theoretical distribution for CQT scores. 
  

 
 1 This project was supported and made possible by the Lafayette Instrument Company where Raymond Nelson is employed as a research 
specialist. 
 
2 Raymond Nelson is a research specialist with Lafayette Instrument Company, which develops and markets polygraph technologies. 
Mr. Nelson is a polygraph field examiner and psychotherapist with expertise in sexual offending, victimization, trauma and development in 
addition to other experience in testing, data analytics and statistics. Mr. Nelson is one of the developers of the OSS3 computer scoring algorithm 
and has published numerous studies on the ESS and other aspects of the polygraph. Mr. Nelson serves as an expert witness in legal matters 
involving both polygraph and psychology/ psychotherapy. Mr. Nelson is a past president, and currently elected member of the APA Board of 
Directors, and has helped with policy development at the state, local and national level. The views an opinion expressed herein are those of the 
author and not the APA or LIC. 
 
3 Combinatorics is an area of mathematics that involves counting the combinations of objects that can be created from a defined set 
of items according to certain rules or constraints. A number of textbooks, such as the one by Skiena (1990) and Chen and Koh (1992) address 
this topic in detail. 
 
4 Multinomial refers to a statistical distribution of the expected frequency of possible outcomes under repeated trials when there are 
multiple possible outcomes for each individual trial. Applied to the polygraph context each presentation of each test stimulus and each sensor 
score represents an individual trial for which the outcomes maybe coded in as + or 
0. The more common binomial distribution, with two possible outcomes for each trial, is a special case of the multinomial. Detailed information 
can be found in mathematics texts and reference such as by Abramowitz & Stegun, (1972) and Olver, Lozier, Boisvert, & Clark (2010). 
 
5 A distribution is a numerical and mathematical description of the range of possible values for a random variable.      A random variable 
is a value that is unknown and can take a variety of possible values. Statistical distributions are mathematical or empirical descriptions of the 
range of values and the expected proportion or probability of observing each unique value if they occur due to random chance alone. More 
information can be found in statistics textbooks such as the by Evans, Hastings & Peacock. (2010) and Spiegel (1992). 
 
6 The ESS is an evidencebased standardized protocol for the analysis of comparison question polygraph data, and is largely a derivative 
product of earlier research by others, including: Kircher and Raskin (1988), Raskin, Kircher, Honts and Horowitz (1988), Kircher, Krisjianssen, 
Gardner and Webb (2005), Krapohl and McManus (1999), and Senter and Dollins, (2003). 

  
Statistical reference distributions7,8, are said to be theoretical then they are calculated from basic facts and 
assumptions that are accepted as the product of logical and mathematical proof. This is in contrast to empirical 
distributions that are calculated from observed sampling data9. In practice, theoretical and empirical reference 
distributions are often used together10. Part of the usefulness of mathematical/theoretical distributions is that 
probability statements about the statistical significance of observed data are mathematical abstractions that may be 
more robust against sample group differences than empirically derived reference distributions – if the theory is valid. 
The multinomial distribution, a form of discrete11 probability distribution, can be used to describe the distribution 
of all possible outcomes under the null hypothesis to the analytic theory of the CQT. 
 

Analytic theory of the CQT 
 
The analytic theory of the polygraph has been discussed and evaluated in numerous studies and publications (Bell, 
Raskin, Honts & Kircher, 1999; Honts & Peterson, 1997; Honts & Raskin, 1988; Honts & Reavy, 2015; Kircher & Raskin, 
1988; Kircher, Packard, Bell & Bernhardt, 2001; MacLaren & Krapohl, 2003; Nelson, 2014, 2015a, 2015b; Raskin, 
Honts & Kircher, 2014; Raskin, Kircher, Honts & Horowitz, 1988), and holds that greater changes in physiological 
activity are loaded at different types of test stimuli as a function of deception or truth telling in response to the 
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relevant target stimuli. During the interview phase of a polygraph examination an examinee who does not wish to 
make a confession will deny involvement in a behavioral issue under investigation. 
 
During a polygraph test, changes in physiological activity are recorded using an array of recording sensors. Data from 
the recording sensors is subject to numerical transformation and reduction for statistical analysis. The goal of the 
analysis is to classify test results as deceptive or truthful based on the differential salience (Handler & Nelson, 2007; 
Senter, Weatherman, Krapohl & Horvath, 2010) of different types of test stimuli. The psychological basis for observed 
differences in physiological activity can be thought of as generally involving a combination of the mental effort 
necessary to conceal the truth and assert a lie, emotion related to the behavioral act or the potential consequences 
for the act, and conditioned responding to the descriptive stimulus as a result of involvement or experience in a 
behavioral act (Hander, Shaw & Gougler, 2010; Nelson, 2015a) under investigation. 
 
Polygraph testing is neither a deterministic observation of deception or truth telling (i.e., perfect or unchangeable 
and not amenable to human behavior), nor a direct physical or linear measurement of deception or truth. Scientific 
tests are not expected to be infallible and are fundamentally probabilistic – including when probabilistic results are 
reduced to categorical results for convenience. Like other scientific tests, the purpose of the polygraph test is to 
record and analyze data as a basis for replicable calculation of the probabilistic result (American Polygraph 
Association, 2011, Nelson & Handler, 2012, 2015; Nelson, et al., 2011). Probabilities associated with test results can 
refer to expected classification accuracy rates with groups or samples of exams, and can also refer to the estimated 
statistical error or accuracy level for a single examination. 
_________________________________________________________________________ 
 
7 A statistical distribution is a set of numbers that can represent a phenomenon of interest (e.g., height, weight or polygraph scores) 
for which the data are nondeterministic or imperfect and are expected to vary somewhat. Data that vary in a completely unordered or random 
manner will not be useful to guide our conclusions about observations of real world phenomena. Data that vary with some degree of order can 
be useful if the rules and assumption that determine the form of the data distribution can be studied and proofed by statisticians and 
mathematicians. Statistical distributions are characterized by numerical parameters that provide all the information necessary to calculate the 
distribution mathematically. 
 
8 For example: the Gaussian or normal distribution, sometimes called a bell curve, is a commonly used theoretical distribution that is 
related to the standard normal or z distribution. The normal distribution characterizes a variety       of naturally occurring phenomena. There 
are a number of other common and recognizable theoretical distributions, including the Chi squared distribution that is the sum of squared 
standard normal deviates, the t distribution that characterizes the distribution of small samples and which will converge towards the normal 
distribution for large samples, the binomial or Bernoulli distribution for discrete values that will be asymptotically normal for large sample sizes, 
the Poisson distribution that characterize the frequency of occurrence of time series events, the Weibull distribution that can be used to 
characterize the reliability of lifetime and failure events in engineering, the family of exponential logarithmic distributions that can be used to 
characterize nonlinear increases or decreases in events, the uniform distribution of decimal proportions between 0 and 1, and other theoretical 
distributions. 
 
9 For example: sampling data that are normally distributed will produce a histogram of similar shape to the standard normal 
distribution. However, whereas a histogram is a description of available empirical sampling data, a theoretical distribution such as the standard 
normal distribution is a mathematical abstraction. 
 
10 Statistical procedures often involve the study of an observed empirical distribution with reference to a theoretical statistical 
distribution that is a mathematical abstraction. When the empirical data conform reasonably to the shape     of a theoretical distribution we 
can then use our mathematical knowledge of the theoretical distribution as a model to make replicable probabilistic and categorical inferences 
about our empirical data. When the empirical data are randomly selected or representative of the population from which the data was drawn 
we can begin to make inferences about the population from which the empirical sample was obtained. 
 
11 A distribution is said to be discrete when the numerical values cannot be divided into fractions or smaller parts, when there are no 
meaningful values in between the nodal values that are characteristic of the data. For example: a person's height or weight can be expressed 
in continuous numerical values including decimals or fractions, while the number     of times a person gets kicked by a horse can be expressed 
using only positive integers for which there is no meaningful interpretation in between each integer. Theoretical distributions are said to be 
continuous when the data values can     be expressed using numbers than can be continuously divided into infinitely smaller and smaller parts 
for which there remains some useful and meaningful interpretation. For example, the uniform distribution of probabilities between 0 and 1 is a 
continuous distribution. 
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Administration and scoring of the CQT 
 
The CQT is administered through the use of a no accusatory pretest interview, during which the issue under 
investigation is clarified and all test questions are reviewed with the examinee (American Polygraph Association, 
2016; Raskin & Honts, 2002; Raskin, Honts & Kircher, 2014, Handler & Nelson, 2008), followed by the acquisition and 
recording of the test data in response to several iterations of a sequence of stimulus questions that includes the 
relevant or investigation target stimuli, comparison question stimuli (Kircher and Raskin, 1988; Bell et al., 1999; 
Department of Defense, 2006 Handler & Nelson, 2008; Krapohl & Shaw, 2015) and other procedural questions. A 
common CQT question sequence for an event specific diagnostic exam will include three relevant target questions, 
and three comparison questions, and  will  be repeated three to five times (Bell, Raskin, Honts & Kircher, 1999; 
Department of Defense, 2006, Handler & Nelson, 2008; Krapohl & Shaw, 2015). CQT data consist traditionally of 
timeseries recordings from three different sensors, including the thoracic and abdominal respiration sensors, an 
electrodermal activity (EDA) sensor and a cardiovascular activity sensor. A vasomotor sensor, also sometimes 
referred to as a photoelectricplethys mograph (PLE or PPG), can also be included. Data are transformed to numerical 
scores for each stimulus presentation and each recording sensor. 
 
Physiological responses to CQT stimuli are coded using a nonparametric rubric. By convention, positive scores are 
assigned to CQT responses when there is a greater change in physiological activity in response to the comparison 
stimuli, while negative scores are assigned when there is a greater change in physiology in response to the target 
stimuli. Scores of zero can occur when there is no interpretable difference in response, or when there is no response 
to both relevant and comparison stimuli, or when the data are not interpretable due to physical activity or other data 
artifact (Department of Defense, 2006; Krapohl & Shaw, 2015; Nelson, Krapohl & Handler, 2008; Nelson et al., 2011). 
The number of scores will be determined by the number of relevant questions, the number of sensors and the 
number of repetitions of the question sequence. 
  
When using the ESS, EDA scores are weighted more than the other sensor scores. This is because EDA data has been 
shown to be more strongly correlated  with  differences between deceptive and truthful examinees and contributes 
more information to an optimal test model than other sensor data (Ansley & Krapohl, 1999; Honts, Handler, Shaw & 
Gougler, 2015; Harris, Horner & McQuarrie, 2000; Kircher, Kristjansson, Gardner & Webb, 2005; Kircher and Raskin, 
1988; Krapohl & McManus, 1999; Nelson, Krapohl & Handler, 2008; Podlesny &  Raskin,  1978;  Podlesny  & Truslow, 
1993; Raskin, Kircher, Honts & Horowitz, 1988). The procedure for weighting the EDA scores is simply to double all 
EDA integer score values. EDA scores are therefore 2, 0, and + 2 when using the ESS, whereas scores from the other 
sensors are 1, 0 and +1. In this way, nonparametric ESS scores are intended to approximate an optimal statistical 
function. This is different than other manual scoring methods for which the data from various sensors are assumed 
to contribute equally to the effectiveness of the classification model. 
 

Calculation of the multinomial reference distribution 
 
Computation of the theoretical distribution of ESS scores begins with a statement of the null hypothesis to the 
analytic theory of the CQT. The null hypothesis says that physiological responses are not systematically loaded for 
target or comparison stimuli, and instead occur in a random manner for each of the recording sensors. Both the 
analytic theory and the null hypothesis pertain to the data and distribution of scores for the individual sensors in the 
same manner that these pertain to the grand total and question subtotal scores. It is expected that random data, 
under the null hypothesis, will give results that are meaningless and unpredictable, and this will be observed in 
classification accuracy rates that will not differ from random chance. The theoretical distribution of ESS scores is 
multinomial because there are more than two possible scores for each sensor at stimulus presentation (referred to 
more generally as a stimulus trial): 1, 0, and +1. Under the null hypothesis the sensor scores are not loaded in any 
systematic way, and are therefore uniformly or equally likely to occur 12. 
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For each recording sensor, there will exist a multinomial distribution of possible sensor totals determined by the 
number of trials and the number of possible sensor scores for each stimulus trial. For example: the sensor 
distributions for an event specific polygraph test with three relevant questions and three repetitions of the question 
sequence will consist of nine stimulus trials for each question for which there will be three possible sensor scores at 
each trial (27 sensor scores). Similarly, the sensor distribution for an event specific polygraph examination with three 
repetitions of a question sequence that includes only two relevant questions will consist of six stimulus trials, again 
with three possible sensor scores at each trial (18 sensor scores). In the same way, the sensor distributions for an 
event specific polygraph test with five repetitions of a question sequence that includes four relevant questions will 
consist of 20 stimulus trials with three possible sensor scores at each trial (60 sensor scores). 
 
Some polygraph examinations are evaluated using only the question subtotal scores; in this case the number of 
stimulus trials for the calculation of the multinomial sensor distribution will be determined by the number of 
repetitions of the test question sequence. For example: the multinomial distribution for the sensor subtotal scores 
of a multiple issue polygraph with three repetitions of the question sequence will be calculated from three stimulus 
trials regardless of the number of relevant stimuli. 
________________________________________________________________________________ 
 
12 The multinomial distribution can also be calculated with weighted probability values for the possible sensor scores for each stimulus trial when there 
is a satisfactory basis of information to inform those probability values. 

  
 
Computation of the multinomial distribution for sensor totals 
 
A complete discussion of multinomial calculations is beyond the scope of this paper. 
 
 However, a worked example can be useful to illustrate the basic idea. Because transformed numerical results for all 
sensors can receive one of three possible values for each stimulus trial, all sensor distributions are identical under 
the null hypothesis. First it is necessary to establish a coherent vocabulary to describe the various ways of 
summarizing the numerical scores. Table 1 shows a sample score sheet, with simulated random data, illustrating the 
calculation of the question subtotals, sensor subtotals, sensor totals, and grand total score13. There are nine 
different multinomial distributions that can be calculated for the sensor total scores depending on the CQT format. 
This is because CQT formats can consist of two, three, or four relevant questions, and can be completed with three, 
four, or five repetitions of the test question sequence. A multinomial sensor distributions can be calculated for the 
sensor subtotals, for use when polygraph decision rules make use of question subtotals. 
 
The score sheet in Table 1 shows an exam with 9 stimulus trials (i.e., there are three repetitions of a question 
sequence that includes three relevant questions). There are 19,683 unique permutations14 of the score sheet in 
Table 1 and 55 unique unordered combinations15 of the number of +, , and 0 scores. The number of unique 
permutation   is calculated as n raised to the k power (n^k) where n is the number of different possible scores and k 
is the number of trials. Permutations are unique ordered sequences, and are not the same as combinations. The 
number of unordered combinations is calculated as (n+k1)! / (k! * (n1)!) where the “!” indicates the factorial16. The 
number of possible sensor scores for each multinomial sensor distribution is a function of the number of stimulus 
trials using this formula: 2*k+1, where k is the number of stimulus trials. For example, the multinomial distribution 
for the sensor totals with nine trials will include 19 possible values (2*9+1=19) for the sensor totals, ranging from 
9 to +9 including the value 0. 
 ________________________________________________________________________________ 
 
13 The term sensor subtotal refers to the sum of the repetitions of each individual relevant question for a recording sensor. Sensor total 
refers to the sum of all scores for all repetitions of all relevant questions for a recording sensor. The sum of the sensor subtotals will equal the 
sensor total. The term grand total is used to refer to the sum of all sensor scores for all repetitions of all relevant questions. Question subtotal 
refers to the sum of all sensor scores for all repetitions of each individual relevant question. The sum of the question subtotal scores will equal 
the grand total score. There is no mathematical use for the subtotals for each presentation of each stimulus, nor for the sensor subtotals for 
each repetition of the stimulus question sequence in calculation of the multinomial distribution of CQT scores. 
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14 Permutations are unique ordered sequences of the 9 scores which consist of the values +, , and 0. Permutations are immutable, which 
means that the positions of the elements of a permutation are not interchangeable. In other words, the permutation (1, 2, 3) is not the same 
as the permutation (3, 2, 1) or (2, 1, 3) or any other order of the same values. 
 
15 Combinations are sequences of items that are mutable, meaning that the positions of the items in the sequence can be moved without 
changing the value of the sequence. In other words, the combination (1, 2, 3) is the same as (3, 2, 1) because the order of the items is different 
though the items themselves are the same. 
 
16 The general form of the combinatoric formula is n! / ((nk)!*k!) for which common examples have k smaller than n. Factorial 
calculations can quickly become large and unwieldy making algebraic conventions useful. For example: how many unique groups of 3 persons 
can be made from 10 persons? Answer: 10!/(7!*3!) = (10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1) 
/ ((7 * 6 * 5 * 4 * 3 * 2 * 1) * (3 * 2 *1)) = (10 * 9 * 8) / (3 * 2 * 1) = 720 / 6 = 120. The number of k trials in the polygraph 
context is not constrained by and can exceed the value of n. For this reason, we use a different version of the formula. 
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Table 1. Sample score sheet with question subtotals, grand total, sensor subtotals, and sensor totals. 
 
 

Repetition 1 R1 R2 R3 

Respiration 1 0 1 

EDA 0 2 2 

Cardio 1 0 0 

Vasomotor 0 1 0 

Repetition 2 R1 R2 R3 

Respiration 0 1 0 

EDA 2 0 2 

Cardio 1 0 1 

Vasomotor 1 0 1 

Repetition 3 R1 R2 R3 

Respiration 1 1 1 

EDA 0 2 2 

Cardio 0 1 1 

Vasomotor 0 1 0 

 

Question subtotals 3 1 1 

 

Sensor subtotals R1 R2 R3 

Respiration 0 2 0 

EDA 2 0 2 

Cardio 2 1 2 

Vasomotor 1 0 1 

 

Sensors Sensor totals blank  

Respiration 2 

EDA 4 

Cardio 1 

Vasomotor 0 

 

Grand total 5 
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The number of permutations and combination differs greatly for different CQT formats. Table 2 shows the number 
of unique permutations, unordered combinations and the number of different possible sensor scores for different 
CQT formation. The number of unique permutations can be thought of as the total number of different arrangements   
of scores that could possible occur on the score sheet as shown in Table. 1. The number of permutations can become 
quite large. For example: the sensor totals for a polygraph test with 20 stimulus trials (i.e., five repetitions of a 
question sequence that includes four relevant questions) will include 51 possible values (2*20+1=41) for which there 
are 3,486,784,401 unique permutations and 231 unordered combinations. In contrast, the sensor totals for a 
polygraph test with 6 stimulus trials (i.e., 3 repetitions with 2 relevant questions) will included 13 possible values 
from 6 to +6 for which there are 729 possible permutation with 28 unordered combinations of the number of +, and 
0 scores. 
  
The sensor total for a single relevant question in a multiple issue exam consisting of three repetitions of the test 
question sequence will include seven possible values (2*3+1=7) for which there are 27 unique permutations and 10 
unordered combinations. 
 
Because combinations are unordered (i.e., the location of the scores in the score sheet is mutable or changeable), 
the combinations of the number of +, and 0 scores, and resulting sensor totals, will occur more frequently than 
others. Returning to the example of a CQT with three repetition of a question sequence that includes three relevant 
questions, with the 19,683 unique permutations of the possible scores +, and 0, there is only one way to achieve a 
particular sensor score of +9 because all three repetitions of all three relevant questions must produce a sensor score 
of +1 to achieve this sensor score. Similarly, there is only one way to achieve a sensor score of 9. However, there are 
3,139 different ways to achieve a sensor score of 0. 
  
 
 
Table 2. Unique permutations (unordered combinations) and [different number of scores] for sensor totals. 
  

 2 RQs 3 RQs 4 RQs 1 RQ (subtotal) 

3 repetitions 729 (28) [13] 19,683 (55) [19] 531,441 (91) [25] 27 (10) [7] 

4 repetitions 6561 (45) [17] 531,441 (91) [25] 43,046,721 (153) [33] 81 (15) [9] 

5 repetitions 59,049 (66) [21] 14,348,907 (136) [31] 3,486,784,401 (231) [41] 243 (21) [11] 

 
 
Calculation of the multinomial distributions for CQT scores requires the enumeration of all possible permutations 
and combinations. With very small data sets the permutations can be enumerated manually – sometimes even 
mentally when the data are very tiny. The advantages of larger data sets are several, and include smaller errors of 
measurement, greater precision, and reduced granularity of the numerical results. It will be simpler and more 
expedient to work with combinations, instead of permutations, whenever possible when the datasets become larger. 
This is the purpose of combinatorics and multinomial calculations. 
  
To calculate multinomial reference table for sensor scores all that is necessary is to know the number of possible 
scores for each trial (+1, 1, 0), the probability weights associated with each possible score (.333, .333, .333)17, and 
the number of k trials that will be used (number of relevant questions * number of repetitions). In this example, the 
number of relevant questions is three and the number of repetitions is also three, and so the number of k trials is 9. 
To calculate the number of ways to achieve each score it is first necessary to enumerate all 55 possible combinations 
of sensor scores (i.e., how many scores of +1, 1, and 0)18, and then sum the scores for each combination and calculate 
the factorial for the result. Next it will be necessary to calculate the factorial for the product of the scores for each 
combination. Finally, we can divide the factorials of the sums by the factorials of the products. The result will be the 
number of ways to achieve each combination of scores. Each of the 55 combinations of scores must be summed after 
multiplying the number of each possible score by the value of the score, and it will be noticed that the sums will be 
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similar for some combinations. By summing the number of ways for all similar sums we can determine the total 
number of ways to achieve each of the 19 possible sensor scores. 
 
As stated earlier, there are 12 multinomial sensor distributions needed for the ESS, including 9 distributions for the 
sensor totals and 3 for the sensor subtotals. These distributions will describe the number of ways to achieve each of 
the possible sensor scores along with the proportion of ways to achieve each score compared to the distribution. 
Although mathematical concepts are themselves simple, the calculate of all the ways to achieve all the possible 
sensor totals and sensor subtotals for all polygraph test format could become a laborious and punishing task if one 
attempts to do this manually. Fortunately, programmable computers and statistical software are available today, and 
can reduce the arduousness of these calculations for us when we know the correct formula and procedure. 
 
The probability mass function19(pmf) can be calculated by taking the total number number of ways to achieve each 
possible sensor score and dividing that by the total number of different possible sensor scores. The pmf of each 
sensor score will be used later as the probability weight for the possible sensor scores when calculating the 
multinomial distribution of the combined sensor scores. Table 3 shows the multinomial sensor table for a polygraph 
test with three repetitions of three relevant questions, including the number of ways to achieve each possible sensor 
score and the probability mass function for each score. 
  

 
 17 These probabilities are uniform because the multinomial distribution of sensor scores is calculated under the null hypothesis that 
greater changes in physiology are not systematically loaded and are instead randomly distributed, resulting in uniform probabilities for their 
occurrence. 
 
18 For example: if there are nine scores of +1 then there can be zero scores of 1 or 0. If there are eight scores of +1 then there can be one 
score of 1 and zero scores of 0, or one score of 0 and zero scores of 1. And so on. 
 
19 The probability mass function describes the proportion of scores at each level in the distribution and can be used to estimate the 
likelihood of achieving a particular score under the null hypothesis. 
 
20 The probability mass function describes the proportion of scores at each level in the distribution and can be used to estimate the 
likelihood of achieving a particular score under the null hypothesis. 

  
Table 3. Multinomial for one sensor total with three repetitions of three relevant questions. 

 

 

score ways Pmf 
-9 1 .0001 

-8 9 .0005 

-7 45 .0023 

-6 156 .0079 

-5 414 .0210 

-4 882 .0448 

-3 1554 .0790 

-2 2304 .1171 

-1 2907 .1477 

0 3139 .1595 

1 2907 .1477 

2 2304 .1171 

3 1554 .0790 

4 882 .0448 

5 414 .0210 

6 156 .0079 

7 45 .0023 

8 9 .0005 

9 1 .0001 
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 The pmf in Table 3 was compared to  a simple Monte Carlo simulation of 1 million iterations of a sample space 
consisting of n=9 random selections from the uniform distribution of [.333, .333, .333]. Each set or iteration of nine 
random selections resulted in a sum between 9 and +9, for which the results were aggregated over the 1 million 
iterations to determine he proportion of results that produced each of the possible integer scores between 9 and +9. 
Results of the comparison between the closed form multinomial calculation of this distribution and the Monte Carlo 
simulation are shown in Figure 1. There is virtually perfect concordance between the distributions, and differences 
are made visible only through the addition of a small amount of noise to one of the lines. The meaning of this is that 
the multinomial calculations can be considered correct because they can be verified with a simulation for which the 
intuition is simpler than the intuition for the combinatoric math. 
  
Figure 1. Histogram comparing a MonteCarlo simulation with the closed form multinomial sensor distribution for 
three repetitions of a sequence that includes three relevant questions. 
 

 
 
Reference tables for sensor totals are shown in Appendices AC for CQT formats consisting of five repetitions of 
question sequences including two, three and four relevant questions with three position scoring. Appendix D shows 
the reference table for sensor scores for sensor subtotals with five repetitions of the relevant questions with three 
position scoring. 
 
Computation of the multinomial reference distribution for combined sensor scores 
 
Because no classification can be made using an individual sensor total, the distribution of combined sensor scores 
will be of more useful to field examiners than the distribution of scores for individual sensors. The distribution of 
combined CQT sensor scores is the combination of the multinomial distributions of the scores for the individual 
sensors using the pmf for the sensor scores as the weighting coefficients. 
 
One important aspect of the multinomial distribution of ESS scores is that EDA scores are weighted more than other 
sensor scores in attempt to approximate a more optimal statistical function than can be achieved by naïve 
weighting21. A consequence of this weighting is that sensor totals for ESS scores are immutable (i.e., scores cannot 
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be interchanged for the sensors) and the multinomial distribution cannot be calculated using the computationally 
more convenient method involving unordered combinations of sensor scores. Instead the multinomial distribution 
of ESS scores must be completed using the more exhaustive method involving unique permutations. Fortunately, 
computers today, once they are given properly coded instructions, can perform this task easily. 
 _______________________________________________________________________________ 
 
21 Naive in this usage (analytics and statistics) refers to an assumption, not necessarily supported by evidence, that  we know nothing 
about the relative importance and contribution of the different sensor data to the final test result and precision of the test model. 

  
 The distribution of the combined sensor totals – in the form of a grand total score or question subtotal score – is 
also a multinomial distribution. For the distribution of combined sensor scores n is the number of possible scores 
that can result for each sensor (e.g., n = 19 possible scores ranging from 9 to +9 when there are three repetitions of 
a question sequence that includes three relevant questions) while k is the number of sensors included in the grand 
total or question subtotal scores (i.e.., k = 4 when using the respiration, EDA, cardio and vasomotor sensors). So, the 
distribution of the combined sensor totals will be determined by the number of stimulus trials and the number of 
sensors. The likelihood of each is expressed by the pmf for the sensor total (as shown in Table 3). 
 
The pmf for the sensor total therefore gives us the probability weights for the calculation of the multinomial 
distribution for combined sensor scores. The distribution of combined sensor scores will have a range of 2*n+1 where 
n is the product of the number of sensors and the number of stimulus trials. Following the same example that was 
started earlier, the grand total score for an exam with three repetitions of a question sequence that includes three 
relevant questions and four recording sensors (respiration, EDA, cardio, and vasomotor) will have a range of 91 
possible ESS scores. This is because the four recording sensors have a combined maximum of score of 5 for each 
stimulus trial, because ESS EDA scores are weighted more than the other sensor scores, and because (5*9=45) while 
2*45+1=91. This multinomial distribution has 130,321 unique permutations. 
 
Table 4 shows the multinomial distribution of ESS grand total scores for a polygraph with three repetitions of three 
relevant questions using the traditional array of sensors (respiration, EDA, cardio), including the range of possible 
scores, number of ways to achieve each score and the pmf for each CQT score. Also shown in Table 4 is the cumulative 
distribution function22(cdf), continuity corrected pmf23, along with the odds24. Finally, because point estimation is 
realistically less useful than interval estimation, the 5th percentile lower limit of the confidence interval was 
calculated for the odds using the Clopper Pearson method25 for the binomial (Agresti & Coull, 1998; Clopper & 
Pearson, 1934; Newcombe, 1998; Thulin, 2014). The lower limit of the Clopper Pearson interval allows us to estimate 
the proportion of repeated experiments that can be expected to exceed a threshold    if the present data are 
informing us correctly about reality. When used in the context of Bayesian decisionmaking, the Clopper Pearson 
interval may be thought of as a credible interval that describes the level of confidence or uncertainty about a 
probabilistic and categorical conclusion26,27. 
  

 
22 The cumulative distribution function is the cumulative sum of the pmf. 
 
23 The continuity correction is calculated by averaging all pairs of cell values. This has the effect of placing the location of the probability 
value in the middle of the cell instead of at the edges. This is analogous to sports betting wherein a bet is place on a point value such as 55.5 
even though ½ points are never scored in reality. This allows a more straightforward discussion of the odds that the actual point score will be 
over or under the value. 
 
24 Odds are always presented as relative to the value of 1 and indicate the likelihood of achieving a score of equal or more extreme 
value. 
 
25 This interval estimation method was selected because it known to never have less than the nominal coverage area. In other words, 
the actual coverage rate for a 95% confidence interval may exceed 95% depending on the input parameters. Other interval estimation methods 
may have actual coverage rates that are less than nominal depending on the input. 
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24 Credible intervals in Bayesian analysis are analogous to confidence intervals in frequentist analysis, except that Bayesian analysis 
regards the criterion of interest as a probability and the data as fixed (i.e., it is the information available with which to calculate a conclusion). 
In contrast, frequentist confidence intervals regard the criterion as fixed (reality exist in only one form) and regards the data as a random 
variable for which the confidence interval describes the likelihood of obtaining the data. 
 
25 For example: the lower limit of a Bayesian credible interval might tell us that we are 95% certain that the odds exceed a particular 
value. 

  
Table 4. Multinomial distribution of ESS grand total scores for three repetitions of a question 
sequenced that includes three relevant questions, with the number of ways to achieve each 
score, pmf, cdf, continuity-corrected cdf, odds and the 5th percentile lower limit of the 
Clopper-Pearson interval (extreme values are omitted). 

 

 
score ways pmf cdf cdfContCor odds oddsLL05 

-19 90 .0004 .0008 .0006 1712 11.27 

-18 100 .0007 .0014 .0011 910.8 11.07 

-17 108 .0011 .0025 .0020 503.7 10.73 

-16 117 .0018 .0043 .0035 288.9 10.21 

-15 124 .0029 .0072 .0058 171.4 9.47 

-14 132 .0044 .0116 .0094 105.1 8.52 

-13 138 .0064 .0179 .0148 66.37 8.45 

-12 145 .0092 .0270 .0227 43.11 7.08 

-11 150 .0127 .0394 .0336 28.73 6.28 

-10 156 .0169 .0558 .0485 19.62 5.31 

-9 160 .0220 .0771 .0681 13.69 4.35 

-8 165 .0278 .1037 .0931 9.74 3.6 

-7 168 .0341 .1360 .1242 7.05 2.9 

-6 172 .0406 .1742 .1617 5.18 2.34 

-5 174 .0471 .2181 .2057 3.86 1.87 

-4 177 .0531 .2673 .2558 2.91 1.48 

-3 178 .0584 .3211 .3115 2.21 1.17 

-2 180 .0624 .3786 .3717 1.69 0.91 

-1 180 .0649 .4386 .4350 1.3 0.71 

0 181 .0658 .5000 .5000 1 0.55 

1 180 .0649 .5614 .5650 1.3 0.71 

2 180 .0624 .6214 .6283 1.69 0.91 

3 178 .0584 .6789 .6885 2.21 1.17 

4 177 .0531 .7327 .7442 2.91 1.48 

5 174 .0471 .7819 .7943 3.86 1.87 

6 172 .0406 .8258 .8383 5.18 2.34 

7 168 .0341 .8640 .8758 7.05 2.9 

8 165 .0278 .8963 .9069 9.74 3.6 

9 160 .0220 .9229 .9319 13.69 4.35 

10 156 .0169 .9442 .9515 19.62 5.31 

11 150 .0127 .9607 .9664 28.73 6.28 

12 145 .0092 .9731 .9773 43.11 7.08 

13 138 .0064 .9821 .9852 66.37 8.45 

14 132 .0044 .9885 .9906 105.1 8.52 

15 124 .0029 .9928 .9942 171.4 9.47 

16 117 .0018 .9957 .9966 288.9 10.21 

17 108 .0011 .9975 .9980 503.7 10.73 

18 100 .0007 .9986 .9989 910.8 11.07 
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The distribution shown in Table 4 was also compared a simple MonteCarlo simulation of 1 million iterations. The 
MonteCarlo simulation for ESS grand totals scores consisted of three sensor scores with a range of -9 to +9, which 
were sampled using the pmf from Table 3 as the sampling weighting coefficients. After multiplying the EDA scores 
by two, the sum for each case in the simulation was an integer between 36 to +36. Results for the 1 million 
simulations were aggregated for the number and proportion of iterations that produced each of the possible scores 
from -36 to +36. A comparison between the closed form multinomial calculation of this distribution and the Monte 
Carlo simulation is shown in Figure 2. There is again virtually perfect concordance between the distributions, and 
differences are made visible only through the addition of a small amount of noise to one of the lines. 
  
Figure 2. Histogram comparing a Monte Carlo simulation of CQT scores with the closed form calculations of the 
distribution of ESS grand total scores three repetitions of a sequence that includes three relevant questions using 
the respiration, EDA, and cardio sensors. 
 
 

 
 
  
Appendices IK show the multinomial reference distributions for grand total scores of CQT question sequences that 
include two, three, and four relevant questions with the addition of the vasomotor sensor. Appendix L shows the 
multinomial reference distribution of CQT subtotal scores using the addition  al vasomotor sensor. These reference 
tables can serve as the likelihood function for naïveBayes classification methods, and may be of interest to those 
who wish the study or replicate the closed form multinomial calculation or to compare these results with simulation. 
Reference tables such at that shown in Table 4 and those in the appendices can be used to determine the cutpoints 
for statistical significance prior to testing, and can also be used to the statistical values associated with a test result. 
 
Determination of the cutpoints using Table 4 is a matter of looking in the last column, for lower limit of the Clopper 
Pearson interval for the odds, and then selecting the smallest value that is greater than 1 along with the largest value 
that is less than 1 and then looking in the first column to determine the cutpoint for those odds. Table 4 shows that 
cutpoints of +3 and 3 exceed the odds 1 and 1, meaning that scores that equal or exceed these cutpoints are 
significantly likely to improve our knowledge if we begin by assuming we know nothing. Table 4 can also be used to 
determine the odds associated with a test score. To do this, simply locate the lest score in the leftmost column and 
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then select corresponding value from the last column for lower limit of the Clopper Pearson interval where scores 
that exceed the values 1 and -1 are statistically significant at the .05  (one 
tailed) level. 
 
Reference tables such as that shown in Table 4 can reduce the need for procedurally intensive recalculation of a 
range of values that may be used repeatedly. For this reason, to reduce the computational workload for those who 
wish to study or work with the multinomial distributions for CQT scores, all ESS distributions of interest to polygraph 
formats in field practice use today can be calculated and saved in a series reference tables. Appendices EG show the 
multinomial reference distributions for grand total scores of CQT question sequences that include two, three, and 
four relevant questions using the traditional array of respiration, EDA and cardio sensors. Appendix H shows the 
distribution of CQT subtotal scores along with multiplicity corrections28 for two, three and four relevant questions29 
scores using the traditional sensor array. Appendices IK show the multinomial reference distributions for grand total 
scores of CQT question sequences that include two, three, and four relevant questions with the addition of the 
vasomotor sensor. Appendix L shows the multinomial reference distribution of CQT subtotal scores with multiplicity 
correction for two, three and four relevant questions using the additional vasomotor sensor. These reference tables 
can serve as the likelihood function for naïveBayes classification methods, and may be of interest to those who wish 
the study or replicate the closed form multinomial calculation or to compare these results with simulation. 
 
Comparison of Table 4, for three repetitions of a question sequence with three relevant questions, with the one in 
Appendix F, for five repetitions of a question sequence with three relevant questions, shows that although the 
statistical values may differ slightly the integer cut scores are identical. For this reason, the tables in Appendices EL 
show only the calculations with five repetitions. Table 5 shows the ESS cut scores for statistical significance for event 
specific polygraphs using the multinomial reference distributions with a one tailed alpha = .05 for the lower limit of 
the Clopper Pearson interval for both positive and negative classifications. Table 6 shows the ESS cut scores for 
subtotal scores of polygraphs interpreted with an assumption of independent criterion variance. Inspection of Tables 
5 and 6 indicate that integer cut scores, determined by the lower limit of the Clopper Pearson interval, are different 
when using the vasomotor sensor. 
  
Table 5. ESS cut scores for grant total scores of event specific exams using the multinomial reference distributions, 
using a one tailed alpha = .05 for the lower limit of the Clopper Pearson interval for positive and negative 
classifications (multiplicitycorrected subtotal cut scores in parenthesis). 
 
 
 
 
 
 
 

  
28 The multiplicity corrected odds were calculated as the exponent of the natural log of the subtotal odds divided       by the number of 
relevant questions raised the sign value of the lowest subtotal score [exp(log(minSubtotal odds)/numberRQs^minSubtotalSign]. 
 
29 In practice only the lowest subtotal score is used for classification though the multiplicity correction is calculated as a function of the 
number of relevant questions. 

 
 
 
 
 
 

 2 RQs 3 RQs 4RQs 

Respiration, EDA, Cardio +3 / -3 (-5) +3 / -3 (-7) +3 / -3 (-9) 

Respiration, EDA, Cardio, Vasomotor +3 / -3 (-5) +3 / -3 (-7) +3 / -3 (-9) 
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 Table 5. ESS cut scores for subtotal scores of multiple issue exams using the multinomial reference distributions, 
using a one tailed alpha = .05 for the lower limit of the Clopper Pearson interval without statistical correction for 
positive classifications and with statistical correction for negative classifications. 
 

 2 RQs 3 RQs 4RQs 

Respiration, EDA, Cardio +2 / -3 +1 / -3 +1 / -3 

Respiration, EDA, Cardio, Vasomotor +2 / -3 +1 / -3 +1 / -3 

 
 
Discussion 
Counting things is an ancient human activity – perhaps the second, or third, or at least possibly among the top five 
of the oldest professions. Human progress and scientific progress can, in many ways, be thought of as a function of 
the improvements in our ability to count and quantify things. Combinatorics and multinomial calculations is simply a 
way to count things for which different possible combinations can exist. 
 
To appreciate the importance of both theoretical and empirical probability distributions it is useful to remember the 
difference between the two. Empirical distributions are based on the observation of outcomes in a dataset for a 
population, sample or individual. On the other hand, theoretical probability distributions are based on a 
mathematical function that defines the distribution of values that could possibly occur within our theoretical 
understanding of the data. It will also be useful to remember that probability, in general, refers to the measurement 
of uncertainty and the chance of a given event occurring. 
 
An overarching goal of science is to learn the general facts and principles about how reality and the universe works. 
But the volume of phenomena and data in the universe is far too great to work with, and so science often requires 
that we attempt to learn from sampling data. Inferential statistics and probability theory are intended to help us to 
determine what can be reasonably said about reality and the universe based on our analysis of the available data. In 
the context of the polygraph or other scientific test, statistics and probability theory is intended to help us determine 
what can be said about the test subject. Statistics is simply the mathematical language of science, because the goal 
of quantification related directly to the goal of scientific knowledge. 
 
Inferential statistics begins by observing empirical data to determine the distribution of observed values, and ends 
by making reference to a theoretical distribution. Theoretical distributions are the core of statistical decision making 
because they allow us to make replica table mathematical estimations about important phenomena for which we 
can obtain neither a physical measurement nor perfect deterministic observation. Use of the term theoretical should 
not be misunderstood as implying speculation or impracticality. Theoretical distributions sit at the core of inferential 
statistics because they allow us to make allow us to make rational and replicable estimates and predictions about 
any phenomena for which no deterministic solution or physical measurement can be achieved. 
 
Slightly different interpretations may be suggested by the use of empirical and theoretical distributions. Use of 
empirical distributions in the original ESS involved a pragmatic assumption that the test result belonged to one of 
two groups if the test score satisfies    a specified probability threshold that defines the boundary of statistical 
significance for the opposing group. There are two empirical distribution because we are seeking one of two 
classifications. Evaluation of CQT data using a theoretical distribution depends on a single distribution calculated 
under the null hypothesis that CQT data are no systemic or meaningless, occurring only randomly. Instead of 
comparing the test data to a statistical thresh old for the opposing classification, use of the theoretical distribution 
requires the comparison of the test data, and the hypothesis that the data are systematically loaded as a function of 
deception and truth telling, against the null hypothesis of random responses. An interpretation of statistical 
significance can be made when the test score satisfies a decision or classification boundary that can be specified in 
terms of a proportion or odds ratio that describes the loading of the numerical scores and physiological responses to 
test stimuli. Both empirical and theoretical distributions can be used in Bayesian classification and decision models. 
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Theoretical reference distributions for CQT scores may provide a in important and useful and generalizable 
probability estimate for ESS scores. Whereas empirical reference distributions depend heavily on the 
representativeness of a volume of available sampling data, theoretical distributions depend more directly on the 
validity of the operational or analytic theory – that data are loaded systematically as a function of deception or truth 
telling. The value of an analytic and operational theory for the comparison question test is that answers to questions 
about validity rely more on observations about real world test performance than upon understanding the exact 
psychological or physiological mechanism that explain why the test works – though questions about psychological 
and physiological constructs will remain important areas for scientific inquiry and research. 
 
Theoretical distributions rely on the mathematical expression, and mathematical proof, of our understanding of 
reality, and can be compared with the practical observation of existing empirical data. Effectiveness of any 
interpretation of the practical categorical meaning of the theoretical probability outcomes of polygraph test results 
will rest on both the correctness of mathematical expressions, and the correctness of the theoretical assumption 
that responses to different types of test stimuli do, or do not, vary as a function of truth telling or deception to the 
target questions. That nonsystematic and meaningless data can be characterized by random numbers is well proven 
to the point where it is accepted as axiomatic. 
  
 
Summary 
 
This project involved the calculation of theoretical reference distributions for ESS scores of CQT formats that consist 
of up to five repetitions of a question series that can include two, three, or four relevant questions, in addition to the 
calculation of the reference distributions for subtotal scores. The theoretical distribution of ESS scores for CQT data 
will take the form of a discrete multinomial distribution determined by the number of relevant questions, the number 
of repetitions of the test stimuli, and the number of physiological recording sensors. In probability theory, 
multinomial distributions provide the probability of observing any particular combination of items for a set of 
possible outcomes that are repeated multiple times. 
 
Computation of the multinomial theoretical distribution for CQT scores begins with the calculation of the multinomial 
distribution of scores for the individual physiological recording sensors. The multinomial sensor distribution is a 
function of the number of possible outcomes for each stimulus trials. The number of stimulus presentations for 
individual sensors is a function of the number of relevant questions and the number of repetitions. Field practices 
require the use of three to five repetitions of the test questions. CQT formats for event specific polygraphs can include 
two to four relevant target stimuli. Test formats that are interpreted with an assumption of independent criterion 
variance can also include two to four target stimuli. The distribution of CQT test scores is the multinomial distribution 
of the combined multinomial distributions for the array of recording sensors. Recording sensors traditionally include 
the respiration, EDA and cardio sensors and can also include a vasomotor sensor. 
 
Two versions of the multinomial reference data were calculated, using the traditional array of respiration, EDA and 
cardio sensors, and also with the addition of a vasomotor sensor. This represents an important advancement to the 
polygraph test because previously published scoring algorithms and previously published empirical reference tables 
did not include vasomotor sensor data. The addition of new sensor data to existing testing and analysis methods is a 
nontrivial endeavor. 
 
Closed form calculations of the multinomial reference distributions were compared graphically with the results of 
Monte Carlo simulation, and showed the two methods can be expected to produce virtually identical distributional 
results. A general description of the calculation of the multinomial reference distributions is provided for replication 
and for readers who wish to develop their intuition and understanding of multinomial calculations and multinomial 
distributions. 
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Theoretical distributions can be useful to make replicable frequentist inferences about empirical data, and can also 
be useful as a likelihood function for Bayesian analysis. Whereas empirical distributions provide a basis for 
probabilistic estimation that an observed test data would be produce by a member of the population represented 
by an empirical reference distribution, theoretical distributions can provide a basis for a likelihood function in 
Bayesian analysis. Bayes analysis30 permits the inference of the cause of the data – which a more direct and intuitive 
conclusion about the probability that a polygraph test result was produced by a deceptive or truthful person. 
 
The purpose of any scoring system is twofold. First it should attempt to optimize the effectiveness of the classification 
model and interpretation of test results31. Secondly, it should help to enable the computation of reasonable 
estimates of the probability that the classification is correct or incorrect. It is expected that any valid scoring or 
analytic method is supported by theoretical assumptions that can be clearly stated and expressed mathematically. 
 
A scientific theory is an expression of our assumptions or conclusion of the universe, or some aspect of it, and tells 
us which aspects of our observation of the universe can be understood in a manner that is consistent with our 
understanding of other observations and other assumptions. The mathematical representation of a theory allows us 
to more reliably predict the consequences or results that can be expected to follow from the theory’s assumption. 
An invalid theory, or rather an invalid hypothesis, will be useless. No amount of pretending will make an invalid 
hypothesis useful, and the only way to retain an invalid theory will be to disconnect from reality and engage or 
intellect in the practice of pseudoscience. If the analytic theory of the polygraph is correct, then a computational and 
intuitive understand of these multinomial reference distributions may be of some usefulness to both scientists and 
field practitioners. 
 
An advantage of the theoretical distribution and a Bayesian approach is that the replacement or addition of 
evaluation features and recording sensors can be a simple matter when naïve assumptions are made. Use of 
theoretical distribution may also offer potential advantages such as robustness against group difference, and a 
simpler route towards the study and understanding of the empirical and practical value of the polygraph test result. 
Increasing the awareness and competence of polygraph professionals in the theory and application of theoretical 
reference distributions may lead to improved general understanding of the scientific meaning of polygraph test 
results, and may help to prevent incorrect interpretations and unrealistic expectations for deterministic perfection 
from probabilistic test results. 
 
Availability of a theoretical distribution for ESS scores may help to advance the practical and empirical validity of the 
polygraph test by relieving concerns about the representativeness of available sampling data. This is because, unlike 
empirical distributions, theoretical distributions are mathematical abstractions that can be robust against some 
group differences as long as the basic analytic theory remains valid for different groups. 
 

 
30 Bayesian analysis requires three elements: some data, a prior probability, and a likelihood function to apply to the test data in order 
to update the prior probability to a posterior probability. Prior probabilities are an important aspect of Bayesian analysis, but are not addressed 
in this manuscript. 
 
31 Tests can be optimized for a number of purposes, according to operational priorities and mission objectives, including: test sensitivity, 
test specificity, falsepositive errors, falsenegative errors, positive predictive value, negative predictive value, or any other metric for test 
precision. 

  
 
Finally, this project does not include an analysis of empirical data. It is limited to the mathematical calculation and 
simulation of the theoretical distributions of CQT scores under the null hypothesis to the operational or analytic 
theory of the polygraph test. Empirical evidence will still be required to demonstrate that classification into the 
criterion categories of guilt or innocence corresponds in the expected ways with differences in response to different 
types of test stimuli. Ultimately, the effectiveness of a classification method will always remain an empirical concern 
especially when the results may play   a role in human decision making. It is hoped that the publication of this 
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description of the multinomial reference distributions, and corresponding reference tables for CQT scores, will help 
to advance the polygraph profession through the development of more objective, accountable and replicable analysis 
models. Of course, effective field polygraph examination may still continue to be subject to constraints and 
requirements around the test administration. And, as always, addition research is recommended. 
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Appendix A. 
 

Multinomial Reference Distribution for Sensor Totals with 5 Repetitions of 2 Relevant Questions 

 
 
 
 

score ways pmf 

-10 1 <.000
1 

-9 10 .0002 

-8 55 .0009 

-7 210 .0036 

-6 615 .0104 

-5 1452 .0246 

-4 2850 .0483 

-3 4740 .0803 

-2 6765 .1146 

-1 8350 .1414 

0 8953 .1516 

1 8350 .1414 

2 6765 .1146 

3 4740 .0803 

4 2850 .0483 

5 1452 .0246 

6 615 .0104 

7 210 .0036 

8 55 .0009 

9 10 .0002 

10 1 <.000
1 
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Appendix B. 
 

Multinomial Reference Distribution for Sensor Totals with 5 Repetitions of 3 Relevant Questions 

 
 

 
 

score ways pmf 

-15 1 <.0001 

-14 15 <.0001 

-13 120 <.0001 

-12 665 <.0001 

-11 2835 .0002 

-10 9828 .0007 

-9 28665 .0020 

-8 71955 .0050 

-7 157950 .0110 

-6 306735 .0214 

-5 531531 .0370 

-4 827190 .0576 

-3 1161615 .0810 

-2 1477035 .1029 

-1 1704510 .1188 

0 1787607 .1246 

1 1704510 .1188 

2 1477035 .1029 

3 1161615 .0810 

4 827190 .0576 

5 531531 .0370 

6 306735 .0214 

7 157950 .0110 

8 71955 .0050 

9 28665 .0020 

10 9828 .0007 

11 2835 .0002 

12 665 <.0001 

13 120 <.0001 

14 15 <.0001 

15 1 <.0001 
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Appendix C. 

 
Multinomial Reference Distribution for Sensor Totals with 5 Repetitions of 4 Relevant Questions 

 
score ways pmf 

-20 1 <.0001 

-19 20 <.0001 

-18 210 <.0001 

-17 1520 <.0001 

-16 8455 <.0001 

-15 38304 <.0001 

-14 146490 <.0001 

-13 484500 .0001 

-12 1409895 .0004 

-11 3656360 .0010 

-10 8533660 .0024 

-9 18062160 .0052 

-8 34880770 .0100 

-7 61757600 .0177 

-6 100640340 .0289 

-5 151419816 .0434 

-4 210859245 .0605 

-3 272290140 .0781 

-2 326527350 .0936 

-1 363985680 .1044 

0 377379369 .1082 

1 363985680 .1044 

2 326527350 .0936 

3 272290140 .0781 

4 210859245 .0605 

5 151419816 .0434 

6 100640340 .0289 

7 61757600 .0177 

8 34880770 .0100 

9 18062160 .0052 

10 8533660 .0024 

11 3656360 .0010 

12 1409895 .0004 

13 484500 .0001 

14 146490 <.0001 

15 38304 <.0001 

16 8455 <.0001 

17 1520 <.0001 

18 210 <.0001 

19 20 <.0001 

20 1 <.0001 
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Appendix D. 
 
Multinomial Reference Distribution for Sensor Subtotals with 5 Repetitions of the Question Sequence 

 

 

score ways pmf 

-5 1 .0041 

-4 5 .0206 

-3 15 .0617 

-2 30 .1235 

-1 45 .1852 

0 51 .2099 

1 45 .1852 

2 30 .1235 

3 15 .0617 

4 5 .0206 

5 1 .0041 
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Appendix E. 

 
Multinomial Reference Distribution of ESS Grand Totals with 5 Repetitions of 2 Relevant Questions 

 

 
score ways pmf cdf cdfContCor odds oddsLL05 

-19 130 .0006* .0014 .0011 903.2 12.29 

-18 140 .0010 .0024 .0019 517.3 11.91 

-17 148 .0016 .0041 .0033 305.8 11.33 

-16 157 .0025 .0066 .0053 186.2 10.53 

-15 164 .0038 .0103 .0085 116.7 9.51 

-14 172 .0055 .0158 .0131 75.11 9.51 

-13 178 .0077 .0234 .0198 49.57 8.04 

-12 185 .0106 .0339 .0290 33.49 7.22 

-11 190 .0142 .0477 .0415 23.13 6.18 

-10 196 .0184 .0656 .0578 16.3 5.12 

-9 200 .0233 .0880 .0788 11.69 4.29 

-8 205 .0287 .1155 .1049 8.53 3.5 

-7 208 .0345 .1482 .1367 6.32 2.82 

-6 212 .0404 .1862 .1743 4.74 2.28 

-5 214 .0462 .2293 .2177 3.6 1.84 

-4 217 .0515 .2771 .2665 2.75 1.47 

-3 218 .0561 .3290 .3202 2.12 1.16 

-2 220 .0595 .3842 .3778 1.65 0.92 

-1 220 .0617 .4415 .4382 1.28 0.72 

0 221 .0625 .5000 .5000 1 0.57 

1 220 .0617 .5585 .5618 1.28 0.72 

2 220 .0595 .6158 .6222 1.65 0.92 

3 218 .0561 .6710 .6798 2.12 1.16 

4 217 .0515 .7229 .7335 2.75 1.47 

5 214 .0462 .7707 .7823 3.6 1.84 

6 212 .0404 .8138 .8257 4.74 2.28 

7 208 .0345 .8518 .8633 6.32 2.82 

8 205 .0287 .8845 .8951 8.53 3.5 

9 200 .0233 .9120 .9212 11.69 4.29 

10 196 .0184 .9344 .9422 16.3 5.12 

11 190 .0142 .9523 .9586 23.13 6.18 

12 185 .0106 .9661 .9710 33.49 7.22 

13 178 .0077 .9766 .9802 49.57 8.04 

14 172 .0055 .9842 .9869 75.11 9.51 

15 164 .0038 .9897 .9915 116.7 9.51 

16 157 .0025 .9934 .9947 186.2 10.53 

17 148 .0016 .9959 .9967 305.8 11.33 

18 140 .0010 .9976 .9981 517.3 11.91 

19 130 .0006* .9986 .9989 903.2 12.29 

* extreme values ommitted 
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Appendix F. 
 

Multinomial Reference Distribution of ESS Grand Totals with 5 Repetitions of 3 Relevant Questions 

 

 
score ways pmf cdf cdfContCor odds oddsLL05 

-22 360 .0009* .0025 .0021 483 17.34 

-21 370 .0013 .0038 .0031 317.7 16.38 

-20 381 .0018 .0056 .0047 212.8 15.18 

-18 400 .0035 .0115 .0098 100.6 13.93 

-17 408 .0047 .0162 .0139 70.88 12.03 

-16 417 .0062 .0223 .0193 50.72 11.12 

-15 424 .0080 .0301 .0264 36.84 9.86 

-14 432 .0102 .0402 .0355 27.14 8.48 

-13 438 .0128 .0526 .0471 20.25 7.15 

-12 445 .0157 .0680 .0613 15.31 6.13 

-11 450 .0190 .0864 .0787 11.7 5.15 

-10 456 .0226 .1081 .0996 9.04 4.27 

-9 460 .0264 .1335 .1242 7.05 3.57 

-8 465 .0304 .1624 .1526 5.55 2.99 

-7 468 .0343 .1950 .1850 4.4 2.48 

-6 472 .0382 .2310 .2213 3.52 2.05 

-5 474 .0418 .2703 .2613 2.83 1.69 

-4 477 .0449 .3125 .3046 2.28 1.4 

-3 478 .0476 .3571 .3508 1.85 1.15 

-2 480 .0495 .4036 .3992 1.51 0.95 

-1 480 .0508 .4515 .4492 1.23 0.77 

0 481 .0512 .5000 .5000 1 0.63 

1 480 .0508 .5485 .5508 1.23 0.77 

2 480 .0495 .5964 .6008 1.51 0.95 

3 478 .0476 .6429 .6492 1.85 1.15 

4 477 .0449 .6875 .6954 2.28 1.4 

5 474 .0418 .7297 .7387 2.83 1.69 

6 472 .0382 .7690 .7787 3.52 2.05 

7 468 .0343 .8050 .8150 4.4 2.48 

8 465 .0304 .8376 .8474 5.55 2.99 

9 460 .0264 .8665 .8758 7.05 3.57 

10 456 .0226 .8919 .9004 9.04 4.27 

11 450 .0190 .9136 .9213 11.7 5.15 

12 445 .0157 .9321 .9387 15.31 6.13 

13 438 .0128 .9474 .9529 20.25 7.15 

14 432 .0102 .9598 .9645 27.14 8.48 

15 424 .0080 .9699 .9736 36.84 9.86 

16 417 .0062 .9778 .9807 50.72 11.12 

17 408 .0047 .9838 .9861 70.88 12.03 

18 400 .0035 .9885 .9902 100.6 13.93 

19 390 .0025 .9919 .9932 145.1 13.75 

20 381 .0018 .9944 .9953 212.8 15.18 

21 370 .0013 .9962 .9969 317.7 16.38 

22 360 .0009* .9975 .9979 483 17.34 

* extreme values omitted 



Multinomial Reference Distributions for the ESS                                                                            Nelson 

 

Polygraph & Forensic Credibility Assessment , 2017, 46 (2) 

Appendix G. 
 

Multinomial Reference Distribution of ESS Grand Totals with 5 Repetitions of 4 Relevant Questions 

 
score ways pmf cdf cdfContCor odds oddsLL05 

-25 684 .0009* .0029 .0024 407.7 21.86 

-24 697 .0012 .0041 .0035 286.3 20.43 

-23 708 .0016 .0057 .0049 203.6 18.75 

-22 720 .0022 .0078 .0068 146.6 19.36 

-21 730 .0028 .0107 .0093 106.9 17.1 

-20 741 .0037 .0143 .0125 78.83 16.24 

-19 750 .0047 .0190 .0167 58.81 13.85 

-18 760 .0059 .0248 .0221 44.36 12.46 

-17 768 .0074 .0321 .0287 33.81 10.92 

-16 777 .0091 .0411 .0370 26.04 9.4 

-15 784 .0110 .0519 .0471 20.24 8.24 

-14 792 .0132 .0649 .0592 15.88 7.08 

-13 798 .0156 .0801 .0737 12.57 6.01 

-12 805 .0183 .0978 .0907 10.02 5.14 

-11 810 .0211 .1182 .1104 8.06 4.36 

-10 816 .0240 .1413 .1330 6.52 3.71 

-9 820 .0270 .1671 .1585 5.31 3.14 

-8 825 .0300 .1957 .1870 4.35 2.65 

-7 828 .0329 .2270 .2185 3.58 2.24 

-6 832 .0356 .2608 .2527 2.96 1.9 

-5 834 .0381 .2968 .2895 2.45 1.6 

-4 837 .0402 .3349 .3286 2.04 1.35 

-3 838 .0420 .3746 .3697 1.71 1.14 

-2 840 .0433 .4157 .4123 1.43 0.96 

-1 840 .0441 .4576 .4559 1.19 0.81 

0 841 .0444 .5000 .5000 1 0.68 

1 840 .0441 .5424 .5441 1.19 0.81 

2 840 .0433 .5843 .5877 1.43 0.96 

3 838 .0420 .6254 .6303 1.71 1.14 

4 837 .0402 .6651 .6714 2.04 1.35 

5 834 .0381 .7032 .7105 2.45 1.6 

6 832 .0356 .7392 .7473 2.96 1.9 

7 828 .0329 .7730 .7815 3.58 2.24 

8 825 .0300 .8043 .8130 4.35 2.65 

9 820 .0270 .8329 .8415 5.31 3.14 

10 816 .0240 .8587 .8670 6.52 3.71 

11 810 .0211 .8818 .8896 8.06 4.36 

12 805 .0183 .9022 .9093 10.02 5.14 

13 798 .0156 .9199 .9263 12.57 6.01 

14 792 .0132 .9351 .9408 15.88 7.08 

15 784 .0110 .9481 .9529 20.24 8.24 

16 777 .0091 .9589 .9630 26.04 9.4 

17 768 .0074 .9679 .9713 33.81 10.92 

18 760 .0059 .9752 .9780 44.36 12.46 

19 750 .0047 .9810 .9833 58.81 13.85 

20 741 .0037 .9857 .9875 78.83 16.24 

21 730 .0028 .9894 .9907 106.9 17.1 

22 720 .0022 .9922 .9932 146.6 19.36 

23 708 .0016 .9943 .9951 203.6 18.75 

24 697 .0012 .9959 .9965 286.3 20.43 

25 684 .0009* .9971 .9976 407.7 21.86 

* extreme values omitted 
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                               Appendix H. 
 

Multinomial Reference Distribution of ESS Subtotals with 5 Repetitions 

 

 

score ways pmf cdf 
Cdf 

ContCor 
odds 

odds 

2RQs 

odds 

3RQs 

odds 

4RQs 

odds 

LL05 
odds2RQLL05 odds3RQLL05 odds4RQLL05 

-14 16 .0005* .0007 .0005 1970 44.38 12.54 6.66 6.11 4.19 2.85 2.1 

-13 20 .0011 .0018 .0013 778.5 27.9 9.2 5.28 6.01 4 2.46 1.8 

-12 25 .0022 .0040 .0029 339.5 18.43 6.98 4.29 5.82 3.56 2.17 1.55 

-11 30 .0042 .0082 .0062 161.1 12.69 5.44 3.56 5.46 2.87 1.84 1.35 

-10 36 .0074 .0156 .0120 82.2 9.07 4.35 3.01 4.92 2.44 1.57 1.18 

-9 40 .0122 .0275 .0219 44.7 6.69 3.55 2.59 4.2 2.11 1.34 1.05 

-8 45 .0188 .0458 .0375 25.68 5.07 2.95 2.25 3.86 1.74 1.17 0.93 

-7 48 .0272 .0719 .0607 15.48 3.94 2.49 1.98 3.23 1.47 1.02 0.83 

-6 52 .0374 .1072 .0933 9.72 3.12 2.13 1.77 2.56 1.22 0.89 0.75 

-5 54 .0487 .1524 .1367 6.32 2.51 1.85 1.59 2.02 1.02 0.78 0.68 

-4 57 .0602 .2075 .1914 4.23 2.06 1.62 1.43 1.53 0.86 0.69 0.62 

-3 58 .0710 .2717 .2571 2.89 1.7 1.42 1.3 1.15 0.72 0.61 0.56 

-2 60 .0798 .3434 .3322 2.01 1.42 1.26 1.19 0.84 0.61 0.54 0.51 

-1 60 .0855 .4203 .4143 1.41 1.19 1.12 1.09 0.61 0.51 0.48 0.47 

0 61 .0875 .5000 .5000 1 1 1 1 0.43 0.43 0.43 0.43 

1 60 .0855 .5797 .5857 1.41 2 2.83 4 0.61 0.84 1.13 1.49 

2 60 .0798 .6566 .6678 2.01 4.04 8.12 16.32 0.84 1.47 2.35 3.33 

3 58 .0710 .7283 .7429 2.89 8.35 24.13 69.71 1.15 2.4 3.75 4.75 

4 57 .0602 .7925 .8086 4.23 17.85 75.4 318.5 1.53 3.5 4.83 5.79 

5 54 .0487 .8476 .8633 6.32 39.91 252.2 1593 2.02 4.05 5.7 6.1 

6 52 .0374 .8928 .9067 9.72 94.48 918.4 8927 2.56 5.05 6.04 6.16 

7 48 .0272 .9281 .9393 15.48 239.6 3710 57430 3.23 5.68 6.14 6.17 

8 45 .0188 .9542 .9625 25.68 659.7 16940 435200 3.86 5.99 6.17 6.18 

9 40 .0122 .9725 .9781 44.7 1998 89300 3991000 4.2 6.11 6.18 6.18 

10 36 .0074 .9844 .9880 82.2 6756 555300 4.57E+07 4.92 6.16 6.18 6.18 

11 30 .0042 .9918 .9938 161.1 25940 4178000 6.73E+08 5.46 6.17 6.18 6.18 

12 25 .0022 .9960 .9971 339.5 115300 3.91E+07 1.33E+10 5.82 6.18 6.18 6.18 

13 20 .0011 .9982 .9987 778.5 606100 4.72E+08 3.67E+11 6.01 6.18 6.18 6.18 

14 16 .0005* .9993 .9995 1970 3.88E+06 7.64E+09 1.51E+13 6.11 6.18 6.18 6.18 

* extreme values omitted 
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Appendix I. 
 

Multinomial Reference Distribution for ESS Grand Totals with 5 Repetitions of 2 Relevant Questions with PLE Sensor 

 

 
score ways pmf cdf cdfContCor odds oddsLL05 

-20 2481 .0008* .0019 .0015 659.2 15.03 

-19 2645 .0012 .0031 .0025 402.9 14.37 

-18 2808 .0018 .0048 .0039 252.4 13.47 

-17 2967 .0026 .0074 .0061 161.9 12.31 

-16 3123 .0038 .0112 .0093 106.2 10.94 

-15 3273 .0053 .0164 .0139 71.17 10.8 

-14 3418 .0072 .0235 .0201 48.68 9.9 

-13 3555 .0097 .0331 .0286 33.94 8.1 

-12 3685 .0127 .0455 .0398 24.1 6.95 

-11 3805 .0162 .0613 .0543 17.4 6.03 

-10 3916 .0203 .0809 .0727 12.76 5.05 

-9 4015 .0248 .1047 .0953 9.49 4.14 

-8 4105 .0297 .1330 .1226 7.15 3.4 

-7 4183 .0347 .1659 .1549 5.45 2.77 

-6 4252 .0398 .2034 .1923 4.2 2.25 

-5 4309 .0447 .2452 .2346 3.26 1.82 

-4 4357 .0491 .2910 .2815 2.55 1.47 

-3 4393 .0528 .3401 .3323 2.01 1.18 

-2 4420 .0556 .3919 .3863 1.59 0.95 

-1 4435 .0574 .4455 .4426 1.26 0.76 

0 4441 .0580 .5000 .5000 1 0.6 

1 4435 .0574 .5545 .5574 1.26 0.76 

2 4420 .0556 .6081 .6137 1.59 0.95 

3 4393 .0528 .6599 .6677 2.01 1.18 

4 4357 .0491 .7090 .7185 2.55 1.47 

5 4309 .0447 .7548 .7654 3.26 1.82 

6 4252 .0398 .7966 .8077 4.2 2.25 

7 4183 .0347 .8341 .8451 5.45 2.77 

8 4105 .0297 .8670 .8774 7.15 3.4 

9 4015 .0248 .8953 .9047 9.49 4.14 

10 3916 .0203 .9191 .9273 12.76 5.05 

11 3805 .0162 .9387 .9457 17.4 6.03 

12 3685 .0127 .9545 .9602 24.1 6.95 

13 3555 .0097 .9669 .9714 33.94 8.1 

14 3418 .0072 .9765 .9799 48.68 9.9 

15 3273 .0053 .9836 .9861 71.17 10.8 

16 3123 .0038 .9888 .9907 106.2 10.94 

17 2967 .0026 .9926 .9939 161.9 12.31 

18 2808 .0018 .9952 .9961 252.4 13.47 

19 2645 .0012 .9969 .9975 402.9 14.37 

20 2481 .0008* .9981 .9985 659.2 15.03 

* extreme values omitted 
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                                        Appendix J. 
 

Multinomial Reference Distribution for ESS Grand Totals with 5 Repetitions of 3 Relevant Questions with PLE Sensor 

 
score ways pmf cdf cdfContCor odds oddsLL05 

-24 9915 .0008* .0023 .0019 518.7 21.4 

-23 10248 .0011 .0034 .0028 352.2 20.18 

-22 10572 .0015 .0048 .0041 242.7 18.69 

-21 10888 .0020 .0069 .0059 169.7 16.95 

-20 11193 .0027 .0096 .0082 120.4 17.25 

-19 11488 .0036 .0132 .0114 86.55 14.98 

-18 11770 .0047 .0179 .0156 63.05 13.98 

-17 12040 .0061 .0239 .0210 46.52 12.51 

-16 12295 .0077 .0316 .0280 34.75 10.89 

-15 12536 .0097 .0411 .0367 26.26 9.29 

-14 12760 .0119 .0527 .0475 20.06 8.05 

-13 12970 .0144 .0668 .0607 15.49 6.83 

-12 13163 .0172 .0835 .0765 12.07 5.74 

-11 13342 .0202 .1031 .0953 9.5 4.85 

-10 13504 .0235 .1257 .1172 7.53 4.06 

-9 13652 .0269 .1514 .1424 6.02 3.41 

-8 13783 .0303 .1803 .1710 4.85 2.85 

-7 13900 .0336 .2122 .2030 3.93 2.39 

-6 14000 .0369 .2471 .2383 3.2 2 

-5 14086 .0398 .2847 .2766 2.62 1.67 

-4 14155 .0424 .3247 .3177 2.15 1.39 

-3 14210 .0446 .3667 .3611 1.77 1.16 

-2 14248 .0461 .4102 .4064 1.46 0.97 

-1 14272 .0471 .4548 .4529 1.21 0.8 

0 14279 .0475 .5000 .5000 1 0.67 

1 14272 .0471 .5452 .5471 1.21 0.8 

2 14248 .0461 .5898 .5936 1.46 0.97 

3 14210 .0446 .6333 .6389 1.77 1.16 

4 14155 .0424 .6753 .6823 2.15 1.39 

5 14086 .0398 .7153 .7234 2.62 1.67 

6 14000 .0369 .7529 .7617 3.2 2 

7 13900 .0336 .7878 .7970 3.93 2.39 

8 13783 .0303 .8197 .8290 4.85 2.85 

9 13652 .0269 .8486 .8576 6.02 3.41 

10 13504 .0235 .8743 .8828 7.53 4.06 

11 13342 .0202 .8969 .9047 9.5 4.85 

12 13163 .0172 .9165 .9235 12.07 5.74 

13 12970 .0144 .9332 .9393 15.49 6.83 

14 12760 .0119 .9473 .9525 20.06 8.05 

15 12536 .0097 .9590 .9633 26.26 9.29 

16 12295 .0077 .9685 .9720 34.75 10.89 

17 12040 .0061 .9761 .9790 46.52 12.51 

18 11770 .0047 .9821 .9844 63.05 13.98 

19 11488 .0036 .9868 .9886 86.55 14.98 

20 11193 .0027 .9904 .9918 120.4 17.25 

21 10888 .0020 .9931 .9941 169.7 16.95 

22 10572 .0015 .9952 .9959 242.7 18.69 

23 10248 .0011 .9966 .9972 352.2 20.18 

24 9915 .0008* .9977 .9981 518.7 21.4 

* extreme values omitted 



Multinomial Reference Distributions for the ESS                                                                            

Nelson 

 

Polygraph & Forensic Credibility Assessment , 2017, 46 (2) 

               Appendix K. 

Multinomial Reference Distribution for ESS Grand Totals with 5 Repetitions of 4 Relevant 
Questions with PLE Sensor 

 

score ways pmf cdf cdfContCor odds oddsLL05 

-27 25602 .0008* .0029 .0025 401.4 26.27 

-26 26128 .0011 .0040 .0034 290 24.39 

-25 26638 .0014 .0054 .0047 211.8 22.26 

-24 27133 .0019 .0073 .0064 156.3 22.92 

-23 27610 .0024 .0097 .0085 116.5 20.21 

-22 28070 .0031 .0128 .0113 87.72 19.23 

-21 28510 .0039 .0167 .0148 66.68 16.45 

-20 28931 .0049 .0215 .0192 51.17 14.88 

-19 29330 .0060 .0274 .0246 39.62 13.13 

-18 29710 .0073 .0347 .0313 30.95 11.81 

-17 30068 .0088 .0434 .0394 24.38 10.08 

-16 30407 .0106 .0538 .0491 19.36 8.74 

-15 30724 .0125 .0660 .0607 15.49 7.62 

-14 31022 .0145 .0802 .0742 12.48 6.47 

-13 31298 .0168 .0965 .0899 10.12 5.54 

-12 31555 .0192 .1151 .1079 8.27 4.76 

-11 31790 .0217 .1360 .1284 6.79 4.06 

-10 32006 .0242 .1594 .1514 5.61 3.48 

-9 32200 .0268 .1851 .1770 4.65 2.97 

-8 32375 .0293 .2131 .2051 3.88 2.54 

-7 32528 .0318 .2434 .2356 3.24 2.16 

-6 32662 .0340 .2757 .2685 2.72 1.85 

-5 32774 .0361 .3100 .3035 2.3 1.58 

-4 32867 .0378 .3459 .3404 1.94 1.35 

-3 32938 .0392 .3832 .3789 1.64 1.15 

-2 32990 .0403 .4215 .4185 1.39 0.98 

-1 33020 .0409 .4606 .4591 1.18 0.83 

0 33031 .0411 .5000 .5000 1 0.71 

1 33020 .0409 .5394 .5409 1.18 0.83 

2 32990 .0403 .5785 .5815 1.39 0.98 

3 32938 .0392 .6168 .6211 1.64 1.15 

4 32867 .0378 .6541 .6596 1.94 1.35 

5 32774 .0361 .6900 .6965 2.3 1.58 

6 32662 .0340 .7243 .7315 2.72 1.85 

7 32528 .0318 .7566 .7644 3.24 2.16 

8 32375 .0293 .7869 .7949 3.88 2.54 

9 32200 .0268 .8149 .8230 4.65 2.97 

10 32006 .0242 .8406 .8486 5.61 3.48 

11 31790 .0217 .8640 .8716 6.79 4.06 

12 31555 .0192 .8849 .8921 8.27 4.76 

13 31298 .0168 .9035 .9101 10.12 5.54 

14 31022 .0145 .9198 .9258 12.48 6.47 

15 30724 .0125 .9340 .9393 15.49 7.62 

16 30407 .0106 .9462 .9509 19.36 8.74 

17 30068 .0088 .9566 .9606 24.38 10.08 

18 29710 .0073 .9653 .9687 30.95 11.81 

19 29330 .0060 .9726 .9754 39.62 13.13 

20 28931 .0049 .9785 .9808 51.17 14.88 

21 28510 .0039 .9834 .9852 66.68 16.45 

22 28070 .0031 .9872 .9887 87.72 19.23 

23 27610 .0024 .9903 .9915 116.5 20.21 

24 27133 .0019 .9927 .9936 156.3 22.92 

25 26638 .0014 .9946 .9953 211.8 22.26 

26 26128 .0011 .9960 .9966 290 24.39 

27 25602 .0008* .9971 .9975 401.4 26.27 

* extreme values omitted 
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                      Appendix L. 
 

Multinomial Reference Distribution of ESS Subtotals with 5 Repetitions with PLE Sensor 

 

 

score ways pmf cdf 
Cdf 

ContCor 
odds 

odds 

2RQs 

odds 

3RQs 

odds 

4RQs 

odds 

LL05 
odds2RQLL05 odds3RQLL05 odds4RQLL05 

-15 161 .0005* .0009 .0007 1517 38.94 11.49 6.24 7.71 5.36 3.32 2.24 

-14 200 .0011 .0020 .0015 682.2 26.12 8.8 5.11 7.56 4.48 2.84 1.98 

-13 243 .0021 .0041 .0030 328.4 18.12 6.9 4.26 7.27 4 2.42 1.73 

-12 287 .0037 .0077 .0059 168 12.96 5.52 3.6 6.79 3.44 2.07 1.51 

-11 333 .0062 .0139 .0109 90.88 9.53 4.5 3.09 6.1 2.91 1.81 1.35 

-10 378 .0099 .0236 .0190 51.67 7.19 3.73 2.68 5.22 2.5 1.56 1.2 

-9 423 .0150 .0383 .0315 30.72 5.54 3.13 2.35 4.84 2.08 1.37 1.07 

-8 465 .0216 .0592 .0500 19.01 4.36 2.67 2.09 4.11 1.76 1.19 0.96 

-7 505 .0297 .0875 .0758 12.19 3.49 2.3 1.87 3.3 1.49 1.05 0.87 

-6 540 .0389 .1242 .1104 8.06 2.84 2.01 1.69 2.66 1.26 0.93 0.79 

-5 571 .0489 .1697 .1546 5.47 2.34 1.76 1.53 2.06 1.06 0.83 0.72 

-4 595 .0588 .2236 .2087 3.79 1.95 1.56 1.4 1.58 0.9 0.74 0.66 

-3 615 .0678 .2852 .2720 2.68 1.64 1.39 1.28 1.19 0.77 0.66 0.61 

-2 628 .0750 .3531 .3432 1.91 1.38 1.24 1.18 0.89 0.66 0.59 0.56 

-1 637 .0797 .4254 .4201 1.38 1.18 1.11 1.08 0.65 0.56 0.53 0.52 

0 639 .0814 .5000 .5000 1 1 1 1 0.48 0.48 0.48 0.48 

1 637 .0797 .5746 .5799 1.38 1.91 2.63 3.63 0.65 0.89 1.18 1.52 

2 628 .0750 .6469 .6568 1.91 3.66 7.01 13.41 0.89 1.54 2.45 3.52 

3 615 .0678 .7148 .7280 2.68 7.16 19.17 51.3 1.19 2.5 4.13 5.21 

4 595 .0588 .7764 .7913 3.79 14.38 54.52 206.7 1.58 3.68 5.31 6.97 

5 571 .0489 .8303 .8454 5.47 29.89 163.4 893.3 2.06 4.78 6.77 7.62 

6 540 .0389 .8758 .8896 8.06 64.9 522.8 4212 2.66 5.6 7.47 7.8 

7 505 .0297 .9125 .9242 12.19 148.5 1810 22060 3.3 6.68 7.73 7.84 

8 465 .0216 .9408 .9500 19.01 361.4 6870 130600 4.11 7.32 7.82 7.84 

9 423 .0150 .9617 .9685 30.72 943.7 28990 890600 4.84 7.64 7.84 7.85 

10 378 .0099 .9764 .9810 51.67 2669 137900 7126000 5.22 7.77 7.84 7.85 

11 333 .0062 .9861 .9891 90.88 8259 750600 6.82E+07 6.1 7.82 7.85 7.85 

12 287 .0037 .9923 .9941 168 28240 4745000 7.97E+08 6.79 7.84 7.85 7.85 

13 243 .0021 .9959 .9970 328.4 107800 3.54E+07 1.16E+10 7.27 7.84 7.85 7.85 

14 200 .0011 .9980 .9985 682.2 465300 3.17E+08 2.17E+11 7.56 7.85 7.85 7.85 

15 161 .0005* .9991 .9993 1517 2.30E+06 3.49E+09 5.29E+12 7.71 7.85 7.85 7.85 

* extreme values omitted 

 
 


