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Multinomial Cutscores for Bayesian Analysis 

with ESS and Three-Position Scores of Comparison Question Polygraph Tests

Raymond Nelson

Abstract

Multinomial reference distributions calculated under the analytic theory of the 
comparison question test and are available for both Empirical Scoring System and the 
Federal three-position scores. They are then used as a likelihood function for Bayes-
ian analysis of the posterior strength of information for deception and truth-telling. 
Bayesian classification of comparison question test data is accomplished by using 
Bayes theorem, along with the test data, prior information and a statistical likelihood 
function, to calculate a posterior likelihood of deception or truth-telling and then 
quantifying the expected variability of the test data as a Bayesian credible interval. 
A classification of deception or truth-telling is supported when the strength of the 
1-alpha lower-limit of a coverage interval has exceeded the strength of the prior in-
formation for deception or truth-telling. Field polygraph practitioners traditionally 
work with comparison question test data in the form of point scores and cutscores. 
Multinomial cutscores are the minimum scores for which strength of the posterior 
information exceeds the prior information with the uncertainty or expected variation 
reduced to the alpha tolerance level. However, until this time published multinomial 
cutscores have been available only the equal prior condition and only for the symmet-
rical alpha scheme of a = .05, .05 for deception and truth-telling. This project involved 
the tabular calculation of multinomial cutscores for the Empirical Scoring System 
and Federal three-position scoring methods for all permutations of alpha levels at .01, 
.05, and .10 for truth-telling and deception using a distribution of prior odds from 
one in 10 for truth-telling and deception. These cutscore tables permit polygraph field 
practitioners to make use of the advantages of Bayesian analysis while relying on the 
practical intuition of scores and cutscores, and without the need for the recalculation 
of Bayes theorem or Bayesian credible intervals. Multinomial cutscore tables are pro-
vided in appendices.  

Introduction

Multinomial reference distributions were cal-
culated for comparison question polygraphs 
(Nelson 2017; 2018), including event-specific 
diagnostic exams and multiple-issue screen-
ing polygraph with two, three and four, rele-
vant questions using the Empirical Scoring 
System (ESS/ESS-M; Nelson, Krapohl & Han-
dler 2007; Nelson et. al., 2011) and the U.S. 
Federal three-position scores (Department of 
Defense, 2006). The multinomial distributions 
were calculated under the null-hypothesis to 

the analytic theory of the comparison question 
test (CQT), which holds that greater changes 
in physiological activity are loaded at different 
types of test stimuli as a function of deception 
or truth-telling in response to relevant target 
stimuli (Nelson, 2016). 

This analytic theory is premised on a more 
foundational hypothesis that some predictable 
changes in physiology are correlated with de-
ception and truth-telling and can be recorded 
and quantified for probabilistic inference and 
classification. As a practical matter, human 
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physiology and psychology and sufficiently 
noisy that data from a single sensor or sig-
nal, and single presentation of the test stimu-
li, provides weak and insufficient information. 
Instead, an array of sensors, each contribut-
ing unique diagnostic variation or informa-
tion, and systematic repetition of test stimuli, 
are necessary achieve a satisfactory level of 
statistical power and signal discrimination.  

Multinomial Distributions.

ESS and three-position scores of CQT data 
are multinomial because each score can take 
one of three values – indicating that a change 
in physiological activity in response to a rel-
evant question (RQ)  is either greater than, 
less than, or indiscernible from the change in 
physiological activity in response to a compar-
ison question (CQ). Multinomial distributions 
can be calculated using combinatoric math 
(Abramowitz & Stegun, 1972; Chen & Koh, 
1992). CQT formats consist of and array of 
three or four sensors, include two to four RQs, 
in a question sequence that is repeated three 
to five times. A single sensor can produce a 
large number of combinations of scores: from 
3^6 = 729 for three iterations of two RQs, to 
3^20 = 3,486,784,401 for five iterations of 
four RQs. For each CQT format there is a fi-
nite number of combinations of multinomial 
scores and a finite number of ways to achieve 
each possible sensor score. 

A multinomial distribution can be determined 
for the sensor scores by dividing the number 
of ways to achieve each sensor score by the 
number of possible combinations. Calcula-
tion of the exact number of ways to – the most 
complicated part – can be calculated using 
combinatoric math and multinomial coeffi-
cients (Riordan, 2002/1958). It is also possi-
ble, and simpler, to simulate the multinomial 
distribution using Monte Carlo methods. Nel-
son (2017) shows the results of both methods. 

Multinomial distributions for sensor scores 
can also be combined or permuted to calcu-
late a multinomial distribution for subtotal 
and grand total CQT scores. Again, this can be 
accomplished through combinatoric math or 
via simulation. Nelson (2017, 2018a) provided 

exact calculations of the multinomial distribu-
tions for CQT scores. Regardless of whether 
obtain through exact combinatoric calculation 
or via simulation, multinomial distributions 
are useful as a likelihood function for Bayes-
ian analysis of the change in the strength of 
posterior information in support of deception 
or truth-telling. 

Bayesian Analysis

Bayesian analysis is the use of Bayes’ theo-
rem to analyze data and estimate an unknown 
parameter or unknown quantity of interest 
(Bayes & Price, 1756; Berger, 1985, 2006a; 
Bernardo & Smith, 1994; Box & Tiao, 1973; 
Casella, 1985; Downey, 2012, Efron, 1986; 
Gelman et al., 2014; Gill, 2007; Laplace, 1812; 
Lee, 2004; Rubin, Gelman, Carlin & Stern, 
2003; Stone, 2013; Western & Simon, 1994; 
Winkler, 1972). In the context of the CQT the 
unknown quantity or parameter is the likeli-
hood of deception or truth-telling. It is not pos-
sible to detect or quantify deception or truth 
per se because these are not physical quanti-
ties. However, Bayesian analysis permits the 
application of Bayesian probability – the de-
gree of belief, based on analysis and objective 
information, in some knowledge or conclusion 
– to the constructs of deception and truth-tell-
ing. Bayesian analysis makes use of observed 
test data, along with prior probability infor-
mation and a statistical likelihood function, 
to calculate a posterior probability. Bayesian 
analysis can also be used to calculate a Bayes 
Factor (Berger, 2006b, Jeffreys, 1939/1961; 
Kaas & Raftery, 1993; Morey & Rouder, 2011), 
which is the magnitude of change in the pos-
terior strength of information. Bayes Factor is 
advantageous because it is a robust statistic 
– the magnitude of change in the strength of 
posterior information will be the same regard-
less of the prior value. 

Bayesian Classifier for ESS-M and 
Three-position Scores.

Bayesian analysis of CQT data involves the 
use of Bayes’ theorem, along with the observed 
test data, prior information and likelihood 
function, to calculate a posterior conditional 
likelihood, expressed as an odds, of decep-
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tion or truth-telling. The posterior conditional 
odds can be thought of as a description of the 
strength of the test result or degree of belief 
that can be attributed. Use of the odds to ex-
press posterior probabilities is advantageous 
because it permits the discussion of probabil-
ities using whole numbers and also explicates 
that all probabilities are a comparison of the 
strength of some possibility compared to the 
strength of some other possibility. The pos-
terior value from Bayes’ theorem can also be 
thought of as a Bayes Factor when the poste-
rior odds are calculated under the equal prior. 

After calculation of the posterior odds or 
Bayes Factor, the expected variation in test 
data – if it were possible to conduct the same 
examination repeatedly under the same cir-
cumstances – is quantified in the form of a 
Bayesian credible interval, analogous to a 
frequentist confidence interval, using the  
Clopper-Pearson method (Clopper & Pearson, 
1934; Nelson, 2018b). This method is advan-
tageous for the CQT because the resulting 
upper and lower probability boundaries never 
result in mathematically absurd values (i.e., 
never exceeding the 0 and 1  limits of the uni-
form probability distribution), and the result-
ing coverage area is known to always exceed 
the 1-alpha nominal value. A classification of 
deception or truth-telling is supported when 
the strength of the 1-alpha lower-limit of a 
Bayesian credible interval has exceeded the 
strength of the prior information for deception 
or truth-telling.

Point Scores and Cutscores.

Field polygraph practitioners have traditional-
ly relied on numerical point scores and numer-
ical cutscores as an expedient method of clas-
sifying and interpreting CQT data. Although 
traditionally little emphasis was placed on the 
relationship between point scores and proba-
bilities, the availability of both empirical and 
multinomial reference tables has increased 
the accessibility and intuition for discussion of 
this information in field practice during recent 
years. When using the multinomial distribu-
tions for ESS and three-position scores, nu-
merical cutscores can be selected as the min-
imum (absolute) score for which the strength 

of the lower limit of the 1-alpha Bayesian cred-
ible interval exceeds the strength of the prior 
information. Numerical scores that equal or 
exceed the numerical cutscore can be said to 
increase the strength of information indicative 
of deception or truth-telling, at the 1-alpha 
level, relative to the prior information. 

Until this time, published multinomial cut-
scores have been available only for the equal 
prior condition and only for the symmetrical 
alpha scheme of a = .05/.05 for deception and 
truth-telling. This project involved the tabular 
calculation of multinomial cutscores for the 
ESS-M and three-position scoring methods 
for all permutations of alpha levels at .01, .05, 
and .10 for truth-telling and deception using 
a distribution of prior odds from one in 10 for 
truth-telling to one in 10 for deception. Appen-
dices A, B, C and D show the cutscore tables. 
To reduce the number of tables to the mini-
mum possible, all tables were calculated us-
ing the simplified ESS-M solution described by 
Nelson and Rider (2018) as shown by Nelson, 
Handler, Coffee, Prado and Blalock (2019). Ap-
pendix A shows the tabular calculation of mul-
tinomial cutscores for ESS scores of event-spe-
cific diagnostic exams. Appendix B shows the 
multinomial cutscores for ESS scores of mul-
tiple-issue screening polygraphs. Appendices 
C and D show the multinomial cutscores for 
three-position scores of event-specific diag-
nostic polygraphs and multiple-issue screen-
ing polygraphs, respectively. 

Careful inspection of these appendices will 
shows cutscores that may be at first counter-
intuitive; cutscores are selected so that pos-
terior information is strengthened, relative 
to the prior information, at the 1-alpha level, 
with the result that under some strong prior 
conditions cutscores may increase for both 
deceptive and truthful classifications. Also, 
information contained in subtotal scores will 
be of insufficient statistical power to provide 
posterior information at the 1-alpha level un-
der some strong prior conditions.

Summary and Conclusion. 

Analysis of CQT test data is conceptually sim-
ilar to the analysis of other scientific test data, 
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and consists of four main functions or oper-
ations. These include feature extraction, nu-
merical transformation and data reduction, 
calculation of a statistical classifier using of 
some form of likelihood function, and inter-
pretation of the meaning of the numerical in-
formation. 

These operations are often reduced to simple 
procedures that can be executed with little 
awareness of or attention to the underlying 
processes – and often with imprecise bound-
aries between the operations. For example, 
feature extraction can be accomplished si-
multaneously when the feature of interest is 
a measurement. In a narrower sense, feature 
extraction is the identification of useful or 
meaningful changes in physiological activity 
in response to test items. Numerical transfor-
mation, in practical terms, is the assignment 
of numerical point scores to responses ob-
served in recorded CQT data. Data reduction 
can involve a variety of mathematical trans-
formations. However, when working with point 
scores, data reduction can be a simple matter 
of addition of subtotal and grand total scores. 
The simplest form of likelihood function is a 
numerical cutscore for which we expect the 
rate of misclassification error or precision to 
achieve certain desired levels, based on empir-
ical and theoretical evidence. Another simple 
form of likelihood function can be observed in 
the form of empirically derived test sensitivity, 
specificity and error rates. Statistical equa-
tions are another form of likelihood function. 
The purpose of any likelihood function is to 
calculate a coherent and reproducible like-
lihood value for the observed data. Interpre-
tation, in its simplest form, is the parsing of 
analytic results into categorical conclusions 
such as statistically significant and not sta-

tistically significant, or positive and negative. 

Interpretation of CQT data, in terms of decep-
tion and truth-telling, will involve a number of 
scientific, philosophical and ethical complex-
ities. These can include: the need to under-
stand the use of probabilistic inference where 
direct physical measurement is not possible; 
epistemological questions of precisely what 
precisely is truth and deception – and what 
does it mean to test, measure and quantify 
these; the need for professional accountability 
when making conclusions that may influence 
the human rights or future of other persons; 
and other concerns. A well-developed and sat-
isfactory system of test data analysis will ad-
dress and manage these concerns by enabling 
professionals to achieve reproducible analyt-
ic conclusions that are correctly anchored in 
scientific and probabilistic knowledge. Ideally, 
a test data analysis system will lead to dis-
cussions of analytic conclusions that are both 
scientifically coherent and practically useful.

Polygraph professionals have long ago tran-
sitioned away from the interpretation of CQT 
results using terms such as deceptive, as 
this can encourage unrealistic expectations 
for deterministic perfection or infallibility. In 
common usage among polygraph field prac-
titioners today are the terms deception indi-
cated and significant reactions which more 
reasonably convey that test results are, of 
themselves, neither a physical substance nor 
a physical action, but can be interpreted as 
a probabilistic indicator when they are sta-
tistically significant. With the understanding 
that all scientific test results are probabilis-
tic, a common question for may will be this: 
what is the strength of the probabilistic infor-

Table 1. Multinomial Cutscores for equal prior and alpha = .05 and .05 for truth-telling and deception.

Table 1. shows the multinomial cutscores for ESS and three position scores under the 
equal prior with alpha is .05 for both truth-telling and deception. Notice that three-position 
multinomial cutscores for multiple issue exams are similar to to ESS-M cutscores as a result 
of blunted precision when using integer values.
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mation for deception or truth-telling? Another 
version of the same question is this: what can 
be reasonably said about the strength of the 
analytic conclusion? It is here that Bayesian 
decision-making offers a practical and intui-
tive advantage over the practice of significance 
testing –  referred to as null-hypothesis signif-
icance testing (NHST; Fisher, 1934; Neyman & 
Pearson, 1928; 1933; Pernet, 2015).  

Statistical values using the NHST paradigm – 
p-values and alpha levels – refer only to strength 
of evidence for a null-hypothesis (which can be 
rejected in favor of the alternative hypothesis if 
sufficiently weak). This nuance important be-
cause there is often a problematic impulse to 
misuse the statistical values themselves as an 
indication of effect-size or strength of the an-
alytic conclusion. Most importantly, a p-value 
– intended to reject a null hypothesis –  is not 
an estimate of the strength of the effect size 
for either the hypothesis or null-hypothesis. 
Attempts to portray a p-value as an estimate 
of effect size are an example of a logical fallacy 
known as argument from ignorance, in which 
the absence of information is misinterpreted 
as a form of proof. Another important consid-
eration is that, in the NHST paradigm, results 
are significant, and categorical conclusions 
are possible, only at the stated alpha level. It 
is possible that some conclusions that are sig-
nificant at alpha = .05 may not be statistically 
significant at alpha = .01. 

In contrast, Bayesian statistical values can be 
interpreted as referring to the strength of in-
formation in direct support of a hypothesis or 
conclusion. An important consideration here 
is that, although Bayesian probabilities can 
be interpreted as referring to the hypothesis 
or conclusion – in the CQT context this is a 
probability or odds of deception or truth-tell-
ing – Bayesian probabilities are conditional 
probabilities. That is, the Bayesian posterior 
probability can be thought of a test likelihood 
statistic conditioned on the prior information 
(or the prior information conditioned on the 
test likelihood statistic). It is possible that cat-
egorical conclusions may change if the pos-
terior conditional probability were calculated 
with different prior information. 

Both NHST and Bayesian analysis assume 

that available test data are an imperfect rep-
resentation of an unknown parameter of in-
terest and are subject to sampling variation 
or measurement error. NHST estimates the ex-
pected variability from the available data and 
the sample size using statistical confidence in-
tervals. Bayesian analysis assumes that avail-
able data are all the information that is pres-
ently available to support a conclusion, and 
also employs procedures to estimate expected 
variation in test data. Bayesian analysis dif-
ferentiates the nuanced meaning of these es-
timations from the frequentist paradigm by 
using the term credible interval to describe the 
1-alpha coverage area for expected variation. 
In practical terms, this means that multino-
mial cutscores for Bayesian analysis of CQT 
data are function of both the prior information 
and the required alpha level for statistical sig-
nificance.

Use of numerical cutscores serves as a practi-
cal convenience that relieves field practitioners 
of the odious burden of mathematical and sta-
tistical calculations. Multinomial cutscores 
will permit field practitioners to make classifi-
cations of deception and truth-telling with the 
knowledge that the lower limit of the 1-alpha 
credible interval will exceed the prior informa-
tion all point scores that exceed a numerical 
cutscore. In practical terms this can be inter-
preted as the 1-alpha level at the data have 
strengthened the information in support of a 
deceptive or truthful conclusion. This can also 
be thought of as the 1-alpha level at which a 
test is indicative of deception or truth-telling. 
Also, the 1-alpha level that another test, under 
the same conditions, will give a similar result. 
Or, the 1-alpha proportion of repeated tests, 
under the same conditions, that would give 
similar results. 

Determination of multinomial cutscores for 
ESS and three-position scores  requires the 
calculation of both Bayes theorem and the 
Clopper-Pearson interval for the distribution 
of possible scores. Effectively, this results in 
the calculation of a unique reference table for 
every alpha and prior scheme. These calcula-
tions can be accomplished manually, though 
the process is tedious, and can also be ac-
complished quickly, easily and accurately us-
ing any desktop or laptop microcomputer. It 
is also possible to complete all calculations in 
a controlled environment and make the infor-
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mation available in tabular reference format 
– which is the purpose of this project.

The multinomial cutscore tables, shown in 
Appendices A-D, can be a useful convenience 
to field practitioners and program managers 
who want visual and tactile access to cutscore 
information without the need for either manu-
al calculations or the experience of a black-box 
calculations that may provide one solution at 
a time. Tabular information are of such great 
convenience that computer algorithms and 
digital calculators will sometimes make use 
of tables as an alternative to the repetition of 
complex mathematical and logical operations. 
Published cutscore tables also provide addi-
tional advantages; they can facilitate training 

in the use of manual analytic procedures that 
will strengthen understanding and intuition 
for the analytic process. Also, tables can be 
used in circumstances in which computers are 
not available to complete the required calcula-
tions. It is hoped that these multinomial cut-
score tables can be useful to field practitioners 
and program managers who desire more visu-
al and intuitive access to the distribution of 
numerical cutscores and their relationship to 
various alpha boundaries and prior informa-
tion. Multinomial cutscores will permits field 
practitioners to make classifications of decep-
tion and truth-telling with the knowledge that 
the lower limit of the 1-alpha credible interval 
will exceed the prior information for all point 
scores that exceed a multinomial cutscore.
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Appendix A: Multinomial Cutscores for ESS Scores of Single Issue Exams
Appendix A: Multinomial Cutscores for ESS Scores of Single Issue Exams 

 
 

ESS-M Scores / Event-Specific Exam 

  Alpha (truth/deception) 

Prior odds of 
deception 

prior 
probability .01/.01 .01/.05 .01/.10 .05/.01 .05/.05 .05/.10 .10/.01 .10/.05 .10/.10 

9 to 1 (9 in 10) .90 +14 / -9 (none) +14 / -6 (none) +14 / -4 (-21) +13 / -9 (none) +13 / -6 (none) +13 / -4 (-21) +13 / -9 (none) +13 / -6 (none) +13 / -4 (-21) 

8 to 1 (8 in 9) .89 +13 / -8 (none) +13 / -5 (none) +13 / -4 (-20) +13 / -8 (none) +13 / -5 (none) +13 / -4 (-20) +12 / -8 (none) +12 / -5 (none) +12 / -4 (-20) 

7 to 1 (7 in 8) .88 +13 / -7 (none) +13 / -5 (-22) +13 / -4 (-18) +12 / -7 (none) +12 / -5 (-22) +13 / -4 (-18) +12 / -7 (none) +12 / -5 (-22) +12 / -4 (-18) 

6 to 1 (6 in 7) .86 +12 / -7 (none) +12 / -4 (-20) +12 / -4 (-16) +11 / -7 (none) +11 / -4 (-20) +11 / -4 (-16) +11 / -7 (none) +11 / -4 (-20) +11 / -4 (-16) 

5 to 1 (5 in 6) .83 +11 / -6 (none) +11 / -4 (-17) +11 / -3 (-15) +10 / -6 (none) +10 / -4 (-17) +10 / -3 (-15) +10 / -6 (none) +10 / -4 (-17) +10 / -3 (-15) 

4 to 1 (4 in 5) .80 +10 / -5 (-21) +10 / -4 (-15) +10 / -3 (-14) +10 / -5 (-21) +10 / -4 (-15) +10 / -3 (-14) +9 / -5 (-21) +9 / -4 (-15) +9 / -3 (-14) 

3 to 1 (3 in 4) .75 +9 / -5 (-16) +9 / -3 (-13) +9 / -3 (-12) +8 / -5 (-16) +8 / -3 (-13) +8 / -3 (-12) +8 / -5 (-16) +8 / -3 (-13) +8 / -3 (-12) 

2 to 1 (2 in 3) .67 +7 / -4 (-13) +7 / -3 (-11) +7 / -2 (-10) +6 / -4 (-13) +6 / -3 (-11) +6 / -2 (-10 +6 / -4 (-13) +6 / -3 (-11) +6 / -2 (-10) 

1 to 1 (1 in 2) .50 +4 / -4 (-9) +4 / -3 (-7) +4 / -2 (-6) +3 / -4 (-9) +3 / - 3 (-7) +3 / -2 (-6) +2 / -4 (-9) +2 / -3 (-7) +2 / -2 (-6) 

1 to 2 (1 in 3) .33 +4 / -7 (-11) +4 / -6 (-9) +4 / -6 (-8) +3 / -7 (-11) +3 / -6 (-9) +3 / -6 (-8) +2 / -7 (-11) +2 / -6 (-9) +2 / -6 (-8) 

1 to 3 (1 in 4) .25 +5 / -9 (-11) +5 / -8 (-9) +5 / -8 (-8) +3 / -9 (-11) +3 / -8 (-9) +3 / -8 (-8) +3 / -9 (-11) +3 / -8 (-9) +3 / -8 (-8) 

1 to 4 (1 in 5) .20 +5 / -10 (-12) +5 / -10 (-10) +5 / -9 (-9) +4 / -10 (-12) +4 / -10 (-10) +4 / -9 (-9) +3 / -10 (-12) +3 / -10 (-10) +3 / -9 (-9) 

1 to 5 (1 in 6) .17 +6 / -11 (-12) +6 / -10 (-10) +6 / -10 (-10) +4 / -11 (-12) +4 / -10 (-10) +4 / -10 (-10) +3 / -11 (-12) +3 / -10 (-10) +3 / -10 (-10) 

1 to 6 (1 in 7) .14 +7 / -12 (-13) +7 / -11 (-11) +7 / -11 (-10) +4 / -12 (-13) +4 / -11 (-11) +4 / -11 (-10) +4 / -12 (-13) +4 / -11 (-11) +4 / -11 (-10) 

1 to 7 (1 in 8) .13 +7 / -12 (-13) +7 / -12 (-11) +7 / -11 (-10) +5 / -12 (-13) +5 / -12 (-11) +5 / -11 (-10) +4 / -12 (-13) +4 / -12 (-11) +4 / -11 (-10) 

1 to 8 (1 in 9) .11 +8 / -13 (-13) +7 / -13 (-11) +8 / -12 (-10) +5 / -13 (-13) +5 / -13 (-11) +5 / -12 (-10) +4 / -13 (-13) +4 / -13 (-11) +4 / -12 (-10) 

1 to 9 (1 in 10) .10 +9 / -14 (-13) +9 / -13 (-12) +9 / -13 (-11) +6 / -14 (-13) +6 / -13 (-12) +6 / -13 (-11) +4 / -14 (-13) +4 / -13 (-12) +4 / -13 (-11) 

Parenthesis indicate the use of a statistical correction for multiplicity effects. 
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Appendix B: Multinomial Cutscores for ESS Scores of Multiple Issue Exams 
 
ESS-M Scores / Multiple Issue Exam 

  Alpha (truth/deception) 

Prior odds of 
deception 

prior 
probability .01/.01 .01/.05 .01/.10 .05/.01 .05/.05 .05/.10 .10/.01 .10/.05 .10/.10 

9 to 1 (9 in 10) .90 (+8) / none (+8) / none (+8) / -9 (+7) / none (+7) / none (+7) / -9 (+7) / none (+7) / none (+7) / -9 

8 to 1 (8 in 9) .89 (+7) / none (+7) / none (+7) / -6 (+7) / none (+7) / none (+7) / -6 (+7) / none (+7) / none (+7) / -6 

7 to 1 (7 in 8) .88 (+7) / none (+7) / -10 (+7) / -6 (+7) / none (+7) / -10 (+7) / -6 (+7) / none (+7) / -10 (+7) / -6 

6 to 1 (6 in 7) .86 (+7) / none (+7) / -8 (+7) / -5 (+6) / none (+6) / -8 (+6) / -4 (+6) / none (+6) / -8 (+6) / -5 

5 to 1 (5 in 6) .83 (+6) / -14 (+6) / -5 (+6) / -4 (+6) / -14 (+6) / -5 (+6) / -4 (+6) / -14 (+6) / -5 (+6) / -4 

4 to 1 (4 in 5) .80 (+6) / -9 (+6) / -5 (+6) / -4 (+5) / -9 (+5) / -5 (+5) / -4 (+5) / -9 (+5) / -5 (+5) / -4 

3 to 1 (3 in 4) .75 (+5) / -6 (+5) / -4 (+5) / -3 (+5) / -6 (+5) / -4 (+5) / -3 (+4) / -6 (+4) / -4 (+4) / -3 

2 to 1 (2 in 3) .67 (+4) / -5 (+4) / -3 (+4) / -3 (+3) / -5 (+3) / -3 (+3) / -3 (+3) / -5 (+3) / -3 (+3) / -3 

1 to 1 (1 in 2) .50 (+2) / -4 (+2) / -3 (+2) / -2 (+1) / -4 (+1) / -3 (+1) / -2 (+1) / -4 (+1) / -3 (+1) / -2 

1 to 2 (1 in 3) .33 (+1) / -6 (+1) / -5 (+1) / -4 (0) / -6 (0) / -5 (0) / -4 (0) / -6 (0) / -5 (0) / -4 

1 to 3 (1 in 4) .25 (0) / -7 (0) / -6 (0) / -6 (0) / -7 (0) / -6 (0) / -6 (0) / -7 (0) / -6 (0) / -6 

1 to 4 (1 in 5) .20 (+1) / -7 (0) / -7 (0) / -6 (0) / -7 (0) / -7 (0) / -6 (0) / -7 (0) / -7 (0) / -6 

1 to 5 (1 in 6) .17 (+4) / -8 (+4) / -7 (+4) / -7 (0) / -8 (0) / -7 (0) / -7 (0) / -8 (0) / -7 (0) / -7 

1 to 6 (1 in 7) .14 (none) / -8 (none) / -8 (none) / -7 (0) / -8 (0) / -8 (0) / -7 (0) / -8 (0) / -8 (0) / -7 

1 to 7 (1 in 8) .13 (none) / -9 (none) / -8 (none) / -8 (0) / -9 (0) / -8 (0) / -8 (0) / -9 (0) / -8 (0) / -8 

1 to 8 (1 in 9) .11 (none) / -9 (none) / -8 (none) / -8 (none) / -9 (none) / -8 (none) / -8 (0) / -9 (0) / -8 (0) / -8 

1 to 9 (1 in 10) .10 (none) / -9 (none) / -9 (none) / -8 (none) / -9 (none) / -9 (none) / -8 (0) / -9 (0) / -9 (0) / -8 

Parenthesis indicate the use of a statistical correction for multiplicity effects. 
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3-Position Scores / Event-Specific Exam 

  Alpha (truth/deception) 

Prior odds of 
deception 

prior 
probability .01/.01 .01/.05 .01/.10 .05/.01 .05/.05 .05/.10 .10/.01 .10/.05 .10/.10 

9 to 1 (9 in 10) .90 +11 / -8 (none) +11 / -5 (none) +11 / -4 (none) +10 / -8 (none) +10 / -5 (none) +10 / -4 (none) +10 / -8 (none) +10 / -5 (none) +10 / -4 (none) 

8 to 1 (8 in 9) .89 +10 / -8 (none) +10 / -5 (none) +10 / -4 (none) +10 / -8 (none) +10 / -5 (none) +10 / -4 (none) +9 / -8 (none) +9 / -5 (none) +9 / -4 (none) 

7 to 1 (7 in 8) .88 +10 / -7 (none) +10 / -4 (none) +10 / -4 (-17) +9 / -7 (none) +9 / -4 (none) +9 / -4 (-17) +9 / -7 (none) +9 / -4 (none) +9 / -4 (-17) 

6 to 1 (6 in 7) .86 +10 / -6 (none) +10 / -4 (none) +10 / -3 (-14) +9 / -6 (none) +9 / -4 (none) +9 / -3 (-14) +9 / -6 (none) +9 / -4 (none) +9 / -3 (-14) 

5 to 1 (5 in 6) .83 +9 / -5 (none ) +9 / -4 (-15) +9 / -3 (-12) +8 / -5 (none) +8 / -4 (-15) +8 / -3 (-12) +8 / -5 (none) +8 / -4 (-15) +8 / -3 (-12) 

4 to 1 (4 in 5) .80 +8 / -5 (none) +8 / -3 (-13) +8 / -3 (-11) +8 / -5 (none) +8 / -3 (-13) +8 / -3 (-11) +7 / -5 (none) +7 / -3 (-13) +7 / -3 (-11) 

3 to 1 (3 in 4) .75 +7 / -4 (-14) +7 / -3 (-11) +7 / -2 (-10) +7 / -4 (-14) +7 / -3 (-11) +7 / -2 (-10) +6 / -4 (-14) +6 / -3 (-11) +6 / -2 (-10) 

2 to 1 (2 in 3) .67 +6 / -3 (-11) +6 / -3 (-9) +6 / -2 (-8) +5 / -3 (-11) +5 / -3 (-9) +5 / -2 (-8) +5 / -3 (-11) +5 / -3 (-9) +5 / -2 (-8) 

1 to 1 (1 in 2) .50 +3 / -3 (-8) +3 / -2 (-6) +3 / -2 (-5) +2 / -3 (-8) +2 / -2 (-6) +2 / -2 (-5) +2 / -3 (-8) +2 / -2 (-6) +2 / -2 (-5) 

1 to 2 (1 in 3) .33 +3 / -6 (-9) +3 / -5 (-7) +3 / -5 (-6) +3 / -6 (-9) +3/ -5 (-7) +3 / -5 (-6) +2 / -6 (-9) +2 / -5 (-7) +2 / -5 (-6) 

1 to 3 (1 in 4) .25 +4 / -7 (-9) +4 / -7 (-8) +4 / -6 (-7) +3 / -7 (-9) +3 / -7 (-8) +3 / -6 (-7) +2 / -7 (-9) +2 / -7 (-8) +2 / -6 (-7) 

1 to 4 (1 in 5) .20 +5 / -8 (-10) +5 / -8 (-8) +5 / -7 (-7) +3 / -8 (-10) +3 / -8 (-8) +3 / -7 (-7) +3 / -8 (-10) +3 / -8 (-8) +3 / -7 (-7) 

1 to 5 (1 in 6) .17 +5 / -9 (-10) +5 / -8 (-9) +5 / -8 (-8) +4 / -9 (-10) +4 / -8 (-9) +4 / -8 (-8) +3 / -9 (-10) +3 / -8 (-9) +3 / -8 (-8) 

1 to 6 (1 in 7) .14 +6 / -10 (-10) +6 / -9 (-9) +6 / -9 (-8) +4 / -10 (-10) +4 / -9 (-9) +4 / -9 (-8) +3 / -10 (-10) +3 / -9 (-9) +3 / -9 (-8) 

1 to 7 (1 in 8) .13 +6 / -10 (-10) +6 / -9 (-9) +6 / -9 (-8) +4 / -10 (-10) +4 / -9 (-9) +4 / -9 (-8) +3 / -10 (-10) +3 / -9 (-9) +3 / -9 (-8) 

1 to 8 (1 in 9) .11 +8 / -10 (-11) +8 / -10 (-9) +8 / -9 (-8) +5 / -10 (-11) +5 / -10 (-9) +5 / -9 (-8) +4 / -10 (-11) +4 / -10 (-9) +4 / -9 (-8) 

1 to 9 (1 in 10) .10 +8 / -11 (-11) +8 / -10 (-9) +8 / -10 (-9) +5 / -11 (-11) +5 / -10 (-9) +5 / -10 (-9) +4 / -11 (-11) +4 / -10 (-9) +4 / -10 (-9) 

Parenthesis indicate the use of a statistical correction for multiplicity effects. 
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3-Position Scores / Multiple Issue Exam 

  Alpha (truth / deception) 

Prior odds of 
deception 

prior 
probability .01/.01 .01/.05 .01/.10 .05/.01 .05/.05 .05/.10 .10/.01 .10/.05 .10/.10 

9 to 1 (9 in 10) .90 (+6) / none (+6) / none (+6) / none (+6) / none (+6) / none (+6) / none (+6) / none (+6) / none (+6) / none 

8 to 1 (8 in 9) .89 (+6) / none (+6) / none (+6) / -10 (+6) / none (+6) / none (+6) / -10 (+5) / none (+5) / none (+5) / -10 

7 to 1 (7 in 8) .88 (+6) / none (+6) / none (+6) / -7 (+5) / none (+5) / none (+5) / -7 (+5) / none (+5) / none (+5) / -7 

6 to 1 (6 in 7) .86 (+5) / none (+5) / -10 (+5) / -5 (+5) / none (+5) / -10 (+5) / -5 (+5) / none (+5) / -10 (+5) / -5 

5 to 1 (5 in 6) .83 (+5) / none (+5) / -5 (+5) / -4 (+5) / none (+5) / -5 (+5) / -4 (+5) / none (+5) / -5 (+5) / -4 

4 to 1 (4 in 5) .80 (+5) / none (+5) / -4 (+5) / -3 (+4) / none (+4) / -4 (+4) / -3 (+4) / none (+4) / -4 (+4) / -3 

3 to 1 (3 in 4) .75 (+4) / -7 (+4) / -4 (+4) / -3 (+4) / -7 (+4) / -4 (+4) / -3 (+4) / -7 (+4) / -4 (+4) / -3 

2 to 1 (2 in 3) .67 (+3) / -4 (+3) / -3 (+3) / -2 (+3) / -4 (+3) / -3 (+3) / -2 (+3) / -4 (+3) / -3 (+3) / -2 

1 to 1 (1 in 2) .50 (+1) / -3 (+1) / -3 (+1) / -2 (+1) / -3 (+1) / -3 (+1) / -2 (+1) / -3 (+1) / -3 (+1) / -2 

1 to 2 (1 in 3) .33 (+1) / -5 (+1) / -4 (+1) / -4 (0) / -5 (0) / -4 (0) / -4 (0) / -5 (0) / -4 (0) / -4 

1 to 3 (1 in 4) .25 (+1) / -6 (+1) / -5 (+1) / -4 (0) / -6 (0) / -5 (0) / -4 (0) / -6 (0) / -5 (0) / -4 

1 to 4 (1 in 5) .20 (none) / -6 (none) / -5 (none) / -5 (0) / -6 (0) / -5 (0) / -5 (0) / -6 (0) / -5 (0) / -5 

1 to 5 (1 in 6) .17 (none) / -6 (none) / -6 (none) / -5 (0) / -6 (0) / -6 (0) / -5 (0) / -6 (0) / -6 (0) / -5 

1 to 6 (1 in 7) .14 (none) / -7 (none) / -6 (none) / -6 (+2) / -7 (+2) / -6 (+2) / -6 (0) / -7 (0) / -6 (0) / -6 

1 to 7 (1 in 8) .13 (none) / -7 (none) / -6 (none) / -6 (none) / -7 (none) / -6 (none) / -6 (0) / -7 (0) / -6 (0) / -6 

1 to 8 (1 in 9) .11 (none) / -7 (none) / -7 (none) / -6 (none) / -7 (none) / -7 (none) / -6 (+1) / -7 (+1) / -7 (+1) / -6 

1 to 9 (1 in 10) .10 (none) / -7 (none) / -7 (none) / -6 (none) / -7 (none) / -7 (none) / -6 (none) / -7 (none) / -7 (none) / -6 

Parenthesis indicate the use of a statistical correction for multiplicity effects. 
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