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Confidence intervals are used in in-
ferential statistics to describe an in-
terval estimate, in contrast to a point 
estimate, for an unknown population 
parameter. The purpose of any scien-
tific test or experiment is to measure 
or quantify some phenomena that 
cannot be subject to either perfect 
deterministic observation or direct 
physical/linear measurement . Per-
fect deterministic observation would 
be immune from any influence from 
human behavior or random variation, 
while direct physical/linear measure-
ment requires both a physical sub-
stance and a physical unit of mea-
surement. Tests achieve the goal of 
quantifying amorphous phenomena 
through the use of statistical measure-
ment and the use of proxy data signals 
that are correlated to the phenomena 

of interest though they are not them-
selves the phenomena of interest. Very 
often a single proxy signal will provide 
only an insufficient level of precision, 
instead multiple proxy signals are of-
ten combined to increase or optimize 
test performance. 

Adding additional data can potentially 
increase the effectiveness of a testing 
model, as long as the additional data 
is itself sufficiently correlated with the 
phenomena of interest, is not redun-
dant with other data, and can be com-
bined in an optimal structural model 
with the other proxy signals. The ef-
fectiveness of a scientific test depends 
on the structural combination of the 
proxy data, the representativeness of 
the normative or reference sample, the 
structural or statistical combination of 
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the different signal data. Ultimately, 
because test data are not themselves 
the phenomena of interest, all test re-
sults are statistical estimations of the 
phenomena of interest. 

All scientific test results are probabilis-
tic approximations, for which there is 
no realistic expectation of 100% accu-
racy. Scientific tests are not expected 
to be infallible. Instead, scientific tests 
are expected to quantify the level of 
confidence or margin of uncertainty 
that can be realistically and reproduc-
ibly assigned to a conclusion. 

Reproducibility is among the most im-
portant objectives for any probabilis-
tic test result and scientific conclusion. 
However, because scientific tests are 
not deterministic, and are subject to 
potential influence from random vari-
ation and from human behavior, some 
normal variation is expected for all 
scientific test results. Reproducibility 
goals therefor involve the calculation 
and estimation of the expected range 
of normal variability, within which a 
result or conclusion can be reasonably 
expected to be observed for a desired 
portion of experiments or trials. That 
range of normally expected variability 
is referred to as the confidence inter-
val, often expressed as the 95% con-
fidence interval though any desired 
percentile range can be used.

Population parameters and sample 
statistics

A parameter is a number that de-
scribes a measurable characteristic of 
a population. A population consists of 
all members of a group. In contrast, a 
statistic is a number that describes a 
measurable characteristic of a sample 
group. A sample is a subset of a pop-
ulation. It is often not realistic to at-
tempt to study an entire population, 
and many scientific studies involve 
sample groups instead. Knowledge 
gained from a sample, and insights 
about the sample group characteris-
tics, can be representative or informa-
tive of the population if the sample is 
selected randomly (i.e., wherein ev-
ery member of the population as an 
equal chance of being included in the 
sample). Of course, knowledge and 
insights gained from samples based 
on non-random sampling methods 
can be expected to provide biased 
or misleading information about the 
population. The tradition of frequen-
tist inference is the practice of gain-
ing knowledge from a sample group 
based on the proportions or frequen-
cies of observable characteristics

Point estimation and interval esti-
mation

Interval estimation, first described by 
Neyman (1937), involves the calcula-
tion of an interval of possible or like-
ly values of an unknown population 
parameter based on sampling data. In 
contrast, point estimation is the calcu-
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lation of a single value, a statistic, that 
is used as a best guess regarding an 
unknown population parameter. For 
example, a sample mean can be used 
an as a point estimate for an unknown 
population mean. 

Confidence intervals can also be cal-
culated for sampling proportions of 
correct classification. For example, 
the effectiveness of credibility assess-
ment tests such as the polygraph test 
can be described using confidence 
intervals. Table 1 shows the criterion 
accuracy for event specific polygraph 

techniques that satisfy the American 
Polygraph Association requirements 
for evidentiary testing, as reported in 
the meta-analytic survey of validat-
ed polygraph techniques (American 
Polygraph Association, 2011), includ-
ing the means, standard errors, and 
95% confidence intervals.

Effective development and use of sci-
entific tests can be thought of as an op-
timization problem, which can involve 
either the maximization of a goal such 
as the correct classification of decep-
tion and truth-telling, or the minimi-
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example, the effectiveness of credibility assessment tests such as the polygraph test can be 
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Polygraph Association, 2011), including the means, standard errors, and 95% confidence intervals. 
 
 
Table 1. Criterion accuracy of evidentiary polygraph techniques (APA, 2011) including proportional means (standard 
errors) and {95% confidence intervals}. 

Unweighted Average Accuracy  .921 (.028) {.865 to .977}  

Unweighted Average Inconclusives  .088 (.030) {.029 to .147}  

Sensitivity  .699 (.053) {.596 to .802}  

Specificity  .717 (.055) {.610 to .824}  

FN Errors  .063 (.035) {.001 to .130}  

FP Errors  .059 (.037) {.001 to .131}  

D Inc  .091 (.041) {.010 to .172}  

T Inc  .086 (.044) {.001 to .173}  

PPV  .927 (.036) {.856 to .999}  

NPV  .915 (.043) {.830 to .999}  

D Correct  .917 (.039) {.841 to .993}  

T Correct  .925 (.040) {.846 to .999}  
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zation of costs associated with errors 
such as false-positive or false-negative 
classifications, or both. With optimiza-
tion problems it is often the worst case 
scenario that is of greatest usefulness. 
This will mean paying attention to the 
lower limit of the confidence intervals 
for correct classifications, and the up-
per limit of the confidence intervals 
for test errors. Confidence intervals, 
because they express a range of like-
ly values for an unknown population 
parameter, are inherently more repro-
ducible and more generalizable than 
point estimates. 

Whereas the means of sampling pro-
portions can be taken as a point esti-
mates, confidence intervals can pro-
vide information that is much more 
generalizable and therefore more 
useful. This is because sampling statis-
tics cannot perfectly represent an un-
known population parameter. In the 
strictest sense, point estimates based 
on sampling data are always incorrect 
and not generalizable. Sampling sta-
tistics are not expected to precisely or 
perfectly indicate the unknown pop-
ulation parameters, and some vari-
ability is expected when observing or 
comparing results from different ran-
dom samples. In other words, differ-
ent random samples drawn from the 
same population can be expected to 
have different values for the sampling 
mean. 

Standard errors

The measurement of variability for 
sampling statistics is referred to as 
the standard error (SE) of a sampling 
statistic, or the standard error of the 
mean estimate (SEM). Standard er-
rors for sampling statistics are similar 
to standard deviations for the values 
of a population. Whereas a standard 
deviation describes the variability of 
the members of a population, a stan-
dard error describes the variability of a 
sampling statistic. With many samples 
we will can construct a distribution of 
sampling statistics. 

When dealing with a sampling pro-
portion (pˆ, pronounced “p-hat”) as a 
point estimate for an unknown popu-
lation proportion (p), the standard de-
viation is np(1-p), where n = the num-
ber of samples and p = the proportion 
of the sample that has a certain char-
acteristic (e.g., correct or incorrect clas-
sification). An interesting and useful 
phenomena is that the sampling dis-
tribution of a sample proportion will 
be approximately normally distribut-
ed when np(1-p) > 10. Similarly, when 
the number of samples is greater than 
30 the distribution of sampling sta-
tistics will be approximately normally 
distributed regardless of the shape of 
the underlying data distribution. 
Another interesting useful phenom-
enon, referred to as the law of large 
numbers (LLN), is that the mean of a 
sampling statistic (e.g. the sampling 
means or any other statistic) will con-
verge towards the population mean 
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upon numerous repeated sampling 
experiments. In other words, the sam-
pling distribution of the sample means 
is the probability distribution of all 
possible sampling means, and has a 
mean equal to the population mean 
μ (pronounced “mu”) with a standard 
error (i.e., the SEM) equal to σ / n ^ (.5), 
where σ (pronounced “sigma”) is the 
standard deviation of the sampling 
means. A number of scientific tests 
rely on this phenomenon to compare 
a test result to an estimate of an un-
known population parameter. 

The standard error (SE) of a statistic 
can also be used to calculate statisti-
cal a confidence interval, often in the 
form of a 90%, 95%, or 99% range. 
Confidence intervals are useful be-
cause they remind us to avoid incor-
rect and simplistic expectations that 
a sampling statistic is a perfect repre-
sentation of the population statistics. 
Use of confidence intervals can also 
deter us from another simplistic error 
of rejecting scientific and statistical 
results because they are inherently 
probabilistic and therefor imperfect. 

What do confidence intervals tell 
us?

Confidence intervals allow us to un-
derstand the probability relationship 
between an observed sample point 
estimate and an unknown population 
parameter. A 95% confidence inter-

val shows the range of possible pop-
ulation parameters that do not differ 
significantly from the sample statistic 
at the .05 level. Similarly, a 99% confi-
dence interval shows the range of pos-
sible parameters that do not differ sig-
nificantly from the sample statistic at 
the .01 level, while a 90% confidence 
interval shows the range of possible 
values for which the difference be-
tween an unknown population pa-
rameter and the observed point esti-
mate are not statistically significant at 
the .10 level. 

Using the 95% confidence interval as 
an example, if the true value of the 
unknown population parameter is 
outside a sample confidence interval 
then it can be said that an event has 
occurred for which probability of oc-
currence due to random chance is less 
than or equal to 5%. This same kind 
of statement can be made about the 
90% and 99% confidence intervals. 

Confidence intervals can also be de-
scribed in term of repeated sampling 
experiments in this manner: if the ex-
perimental procedure were repeated 
with numerous different samples then 
95% of the confidence intervals for 
those different samples would include 
the unknown population parameter. 
The notion of confidence intervals 
can also be applied to a single future 
experiment, in which case the confi-
dence interval is simply an expression 
of the probability that the future cal-
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culation of the confidence interval will 
cover the unknown population pa-
rameter. 

What confidence intervals cannot 
mean

Confidence intervals are potentially 
misunderstood, and it can be useful to 
clarify what they cannot be taken to 
mean. One potential misunderstand-
ing of confidence intervals would at-
tempt to interpret them as a probabil-
ity estimate for a sample statistic of a 
repeated experiment. 

Confidence intervals cannot be inter-
preted as a probability measurement 
of the unknown population parame-
ter, or as an estimate of the probability 
that the unknown population param-
eter exists within a specified interval. 
Attempts at this type of interpretation 
are fundamentally incorrect because 
the unknown population parameter is 
a constant value for which probability 
statements are not warranted. Wheth-
er a calculated confidence interval 
does or does not include the popula-
tion parameter is not a matter of ran-
dom chance. Instead the confidence 

interval itself is the random variable of 
interest.  

The purpose of a confidence interval 
is to describe the range of plausible 
values for an unknown population 
parameter based on the sample data. 
In this case, the 95% probability de-
scribes the reliability or the repeat-
ability of the estimation procedure. In 
other words, the confidence interval 
describes the probability that the data 
have occurred due to random chance 
if the actual population parameter is 
not within the confidence interval. 

Calculation of confidence intervals

Calculation of a confidence interval is 
often accomplished using critical val-
ues of z for the standard normal dis-
tribution. Table 2 shows z-values for 
commonly used confidence intervals.
The lower limit and upper limit of the 
desired confidence interval are cal-
culated using the sampling mean xˉ 
(pronounced “x-bar”) using two equa-
tions: lower limit = xˉ- z * SE and upper 
limit =  xˉ+ z * SE. Often it is the lower 
limit or worst case scenario that is the 
most useful and informative value for 

population parameter is not within the confidence interval.  
 
 
 
 
 
 
 
 
 
Calculation of confidence intervals 
 
Calculation of a confidence interval is often accomplished using critical values of z for the standard 
normal distribution. Table 2 shows z-values for commonly used confidence intervals. 
 
Table 2. Values of z for commonly used confidence intervals. 
99%  z = 2.576 
98% z = 2.326 
95% z = 1.959 
90% z = 1.645 
 
The lower limit and upper limit of the desired confidence interval are calculated using the sampling 
mean x ̄ (pronounced “x-bar”) using two equations: lower limit = x̄ - z * SE and upper limit =  x̄ + z * 
SE. Often it is the lower limit or worst case scenario that is the most useful and informative value for 
risk evaluation and risk management decisions.  
 
Conclusion 
 
This paper has described the basic concept of confidence intervals in inferential statistics, including 
basic conceptual vocabulary and rudimentary calculations. In the realm of Bayesian statistics, the 
allegorical concept is referred to as a credible interval, for which a more complete description will 
have to be the topic of another paper. 
 
Scientific test results are ultimately probability statements. Professional polygraph examiners who 
wish to attain or claim a level of expertise beyond the mere execution of procedural rules for test 
data acquisition and procedural rules for test data analysis will want to develop their ability to 
understand and converse on these topics. Many field practitioners can develop subject matter and 
interviewing expertise that can provide great practical and informational value without expertise 
and familiarity with the underlying test theory and statistical formulae. If the polygraph test result is 
not regarded with any usefulness, then the role of the polygraph examiner is simply that of an 
interviewer or interrogator. In that case there will be no expectation that polygraph field 
practitioners develop or possess any expertise in understanding the meaning, nuances and 
limitations of scientific and probabilistic classification and decision models.  
 
If polygraph test results of themselves are to ever be regarded as a useful form of scientific and 
probabilistic information then it may become necessary for polygraph experts to become more 
familiar with the conceptual vocabulary and use of probabilistic models, including the correct use 
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risk evaluation and risk management 
decisions. 

Conclusion

This paper has described the basic 
concept of confidence intervals in in-
ferential statistics, including basic con-
ceptual vocabulary and rudimentary 
calculations. In the realm of Bayesian 
statistics, the allegorical concept is 
referred to as a credible interval, for 
which a more complete description 
will have to be the topic of another 
paper.

Scientific test results are ultimately 
probability statements. Professional 
polygraph examiners who wish to at-
tain or claim a level of expertise be-
yond the mere execution of procedur-
al rules for test data acquisition and 
procedural rules for test data analysis 
will want to develop their ability to un-
derstand and converse on these top-
ics. Many field practitioners can devel-
op subject matter and interviewing 
expertise that can provide great prac-
tical and informational value with-
out expertise and familiarity with the 
underlying test theory and statistical 
formulae. If the polygraph test result 
is not regarded with any usefulness, 
then the role of the polygraph exam-
iner is simply that of an interviewer or 
interrogator. In that case there will be 
no expectation that polygraph field 
practitioners develop or possess any 
expertise in understanding the mean-

ing, nuances and limitations of sci-
entific and probabilistic classification 
and decision models. 

If polygraph test results of themselves 
are to ever be regarded as a useful 
form of scientific and probabilistic in-
formation then it may become neces-
sary for polygraph experts to become 
more familiar with the conceptual vo-
cabulary and use of probabilistic mod-
els, including the correct use and un-
derstanding of statistical confidence 
intervals. Of course, some field practi-
tioners may have little or no interest in 
developing their expertise in areas of 
statistical abstractions and probabilis-
tic thinking, and may prefer instead to 
emphasize the role of subject matter 
expert in various topical areas of in-
terviewing and interrogation, leaving 
the details of science and probabilistic 
classification to persons with exper-
tise in those areas. Field practitioners 
will never be expected to execute 
the mathematical calculations them-
selves. For those who are interested in 
developing a level of professional ex-
pertise in the science of polygraph, lie 
detection, and credibility assessment 
it is hoped that this document may be 
a useful resource. 
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