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Science is all about trying to under-
stand the universe and reality. What is 
it? How does it works? What is it made 
of? How big is it? What is going to hap-
pen? It’s a big universe and so we do 
not try to understand everything at 
once. Instead we take things one lit-
tle piece at a time. If our knowledge 
about some small aspect of the uni-
verse and reality is correct then we can 
expect our knowledge to fit together 
nicely with other pieces of knowledge 
of other pieces of the universe. Under-
standing the universe, or anything in it, 
requires that we organize our knowl-
edge such that our conclusions can be 
re-analyzed and reproduced at a latter 

time without having to start at the be-
ginning and learn everything anew. In 
this way others might begin to devel-
op additional knowledge about other 
aspects of the universe and reality. 

Understanding the universe, or any-
thing in it, requires that we not only 
systematically differentiate one thing 
from another but that we also attempt 
to learn about the relationships be-
tween things. Relationships between 
physical things, much like relation-
ships between people, are abstract 
and amorphous things that cannot 
themselves be subject to physical 
measurement. And yet amorphous 
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things exist; they are describable and 
real. Relationships between things can 
be experienced, observed and even 
quantified. And so, a goal of science is 
to understand, describe and quantify 
things in the real universe and the re-
lationship between those things. 

Covariance refers to similarities in the 
changes in something and something 
else. The notion of covariance implies 
that the phenomena under observa-
tion are changing and not static. Cova-
riance means that as one thing chang-
es the other thing tends to change in 
a similar way. Covariance in statistics 
refers to a unitized description of how 
much the two things change together. 

In general usage correlation is a word 
that describes a mutual relationship or 
connection between two things. In sci-
entific and statistical usage, correlation 
also refers to the statistical strength 
of the relationship. The difference be-
tween relationship and correlation is 
that a relationship is an abstraction 
that can be observed, experienced or 
described qualitatively, whereas a cor-
relation implies that we have attempt-
ed to quantify a relationship between 
two things. Correlation implies that 
the relationship between two things 
is imperfect. A perfect correlation be-
tween any two things would be easy 
to understand because every aspect 
of one thing would be mirrored in the 

other. A perfect correlation would sig-
nify redundancy, wherein understand 
one thing to any degree of satisfac-
tion will provide equivalent knowl-
edge and information about the oth-
er. Perfection, however, is rare. Most 
things, including most relationships 
and most correlations between things 
are imperfect. Imperfect relationships 
and imperfect correlations take more 
effort to understand and quantify. 

To our good fortune, others before 
us have devoted considerable energy 
and effort to define the concepts and 
procedures necessary to begin to de-
scribe and quantify the correlation be-
tween observable phenomena in the 
form of a correlation coefficient (Katz, 
2006; Pearson, 1895), also known as 
the Pearson correlation. The Following 
is a description of the intuition and 
procedures for the calculation of a 
Pearson Correlation coefficient that is 
often designed with the letter r. 

Intuition: how to think about cor-
relation

Intuition refers to our ability to think 
about and understand the concept. 
The intuition for a correlation coef-
ficient is this: a perfect correlation is 
signified by the value 1.0, whereas no 
correlation is signified by the value 0 
(similar to 0%). These are similar to the 
values 100% and 0%, though it would 
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be incorrect to discuss or describe cor-
relation coefficients as percentages. 
No correlation (no relationship) can 
also be thought of as a completely ran-
dom relationship in which any change 
on one thing can be accompanied by 
absolutely any of all possible changes 
in the other thing. Also, correlations 
can be either positive or negative (in-
verse correlation). Inverse or negative 
correlation means that a change in a 
particular direction for one thing is 
generally accompanied by a change 
in the opposite direction for the oth-
er thing. A correlation coefficient is 
therefore a number on a continuum 
from -1. 0 to +1.0 (See Figure 1).

Figure 1. Correlation coefficient 
-1.0 ------------------ 0 ------------------ +1.0

How to roll-your-own correlation 
coefficient

Calculation of a correlation coefficient 
requires that we first quantify the ob-
served phenomena. And so we begin 
with any set of data. For this example 
we will calculate the correlation be-
tween two fictitious sets of data, A 
and B. Calculation of a correlation co-
efficient requires that the two group 
have an equal number of items and 
assumes that the data are normally 
distributed.

Data A is the set of number 1, 2, 3, 4 

and 5. Data B is the set of numbers 6, 7 
8, 12, and 10. Notice that there is some 
describable, though imperfect, rela-
tionship between these two sets of 
numbers. Data A is a simple sequence 
of five numbers beginning at one and 
for which each item increases by one. 
Data B appear to be a similar sequence 
beginning at six and for which the first 
three items increase by one while the 
fourth item is out of sequence before 
the last item is the expected value 10. 

Data A
1
2
3
4
5

Data B
6
7
8
12
10

Step 1: calculate the mean of each 
data group.

This is done easily by summing the 
items for each group and then diving 
those sums by the number (n) of each 
group.
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Mean A = 3
Mean B = 8.6

Step 2: calculate the standard devi-
ation of each data group. 

Virtually every computer today can run 
software such as Excell (proprietary) or 
LibreOffice (free/open source) that an 
easily calculate standard deviations 
using included functions. Or you can 
roll-your-own standard deviations us-
ing the procedures described by Nel-
son (2017; Five Minute Science Lesson: 
An Algorithm to “Roll-Your-Own” Stan-
dard Deviations). for a description of 
how to roll-your-own standard devia-
tion.

Standard Deviation A = 1.581
Standard Deviation B = 2.408 

Step 3: calculate the deviation for 
each value and the corresponding 
group mean

Deviation refers to the difference be-
tween each item and the mean. The 
mathematical deviations give us in-
formation about how the data vary 
around the group means. 

Group A Deviations 
1 – 3 = -2
2 – 3 = -1
3 – 3 = 0
4 – 3 = 1

5 – 3 = 2

Groups B Deviations
 6 – 8.6 = -2.6
 7 – 8.6 = -1.6
 8 – 8.6 = -0.6
12 – 8.6 =  3.4 
10 – 8.6 =  1.4 

Step 4: Calculate the products of 
the paired deviations for the two 
groups

Multiply each pair of deviations for the 
two groups. Multiplying the paired 
deviations gives us a way to quantify 
the deviation of the two groups.

-2 * -2.6 = 5.2
-1 * -1.6 = 1.6
 0 * -0.6 = 0
 1 *  3.4 = 3.4
 2 *  1.4 = 2.8

Step 5: Sum the products of the de-
viations

Summing the products will give total 
amount of deviation around the two 
group means.

5.2 + 1.6 + 0 + 3.4 + 2.8 = 13
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Step 6: Divide the summed product 
of paired deviations (the result from 
step 5) by N-1

N is the number of pairs. We divide by 
N-1 because we cannot observe the 
entire population and are limited to 
calculation with a sample. When we 
have access to all population data we 
can divide by N. 

13 / (5 – 1) = 
13 / 4       = 3.25

Step 7: Divide the result from step 6 
by the product of the standard de-
viations for the 2 groups

The product of the standard devia-
tions is obtained by multiplying the 
results from step 2.

3.25 / (1.581 * 2.408) = 
3.25 / 3.807           = .854

Result is the correlation coefficient

r = .854

In this example fictitious data there 
is an obvious correlation between 
the changes in the items in the two 
groups. As the items in Group A in-
crease we can generally, though not 
always, expect to observe the items in 
Group B to increase.

Covariance coefficient (what is?)

Covariance is related to correlation. 
The covariance coefficient is the 
un-normalized measurement of joint 
variability between two groups of 
data. The normalized measure is the 
correlation coefficient. In the example 
above we normalize the result in Step 
7 by dividing the result of Step 6 by 
the product of the standard deviations 
for the two groups. In other words we 
see the covariance coefficient at Step 
6. The covariance coefficient tells us 
essentially the same conceptual infor-
mation as the correlation coefficient 
but does so using units of measure 
that are the same unit of measure in 
which the data are expressed (where-
as the correlation is constrained or 
normalized to the range -1.0 to +1.0). 

Interpreting a correlation coeffi-
cient

Statistical correlations are often inter-
preted described qualitatively using 
words such as very weak, weak, moder-
ate, strong, or very strong. A desire for 
concrete interpretation guidelines has 
prompted some to suggest numerical 
thresholds for different qualitative ad-
jectives, though these are increasingly 
viewed as arbitrary, unwise and prob-
lematic because they distract from an 
adequately nuanced understanding 
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of the information. To simplify our 
understanding and interpretation of 
meaning of a correlation statistic it is 
generally sufficient to remember that 
correlation coefficients close to 1.0 are 
approaching a linear or perfect rela-
tionship. Similarly, a relationship that 
approaches the value -1.0 is approach-
ing linearity or perfection though as 
one thing changes the other will be 
observed to change in the opposite 
direction. Values close to 0 signify no 
relationship – also thought of as a ran-
dom relationship. It is also helpful to 
develop our understanding and in-
tuition for correlation coefficients by 
thinking about examples.

 An example using height and 
weight with major league baseball 
players

A sample of baseball statistics can be 
obtained from (http://wiki.stat.ucla.
edu/socr/). Intuitively we understand 
that there is a coherent relationship 
between player height and weight. 
Players who are taller will tend to weigh 
more than those who are less tall. Using 
a sample of N=1035 players we know 
that their heights rage from 67 inches 
to 83 inches and their weights range 
from 150 to 290 pounds. We can cal-
culate the correlation between height 
and weight as r = .542. This is gener-
ally regarded as a moderate to strong 
correlation. We know that height and 

weight are determined largely by ge-
netics, though nutrition and lifestyle 
(and growth hormones) may also play 
a role. We will forgo the details of the 
calculations and encourage readers 
to obtain the data and work it out for 
themselves. Figure 2 shows the scat-
terplot of players’ height and weight. 
The correlation between player height 
can be observed in the apparent lin-
earity of the data points; as player 
height increases player weight also 
generally increases. 
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Correlation of popular vote and 
electoral college votes for US elec-
tions from 1826 to 2008

The population of elected U.S. Presi-
dents from 1826 to 2008 can also be 
obtained from (http://wiki.stat.ucla.
edu/socr/). Calculation of the rela-
tionship between popular votes totals 
and electoral college totals revealed a 
correlation coefficient of r = .681. This 

relationship is approaching what is 
generally regarded as a strong though 
imperfect relationship. Again, readers 
are encouraged to obtain the data and 
practice the calculation of the correla-
tion coefficient. Figure 3 shows the 
scatterplot of popular vote percent-
ages and electoral college percent-
ages, with some obvious linearity de-
spite the presence of some noisy data 
points. 

Figure 2. Scatterplot of height and weight for N=1035 major league baseball 
players. 
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Caution

Correlation is not itself an effect size

The correlation coefficient does not 
tell us the size of the effect in terms 
of a linear proportion or rate of agree-
ment between two things. For that we 
will need to calculate the coefficient 
of determination which is simply r^2 
(r-squared). The coefficient of determi-
nation tells us how much of a change 
in each can be attributed to a change 
in the other thing.

Correlation is not causation

Correlation is not causation is a phrase 
that might easily be repeated as a man-
tra. It is easily overlooked despite its 
importance. Simply identifying a rela-
tionship, and even the direction of the 
association, between two phenomena 
does not automatically tell us about 
the underlying causal relationship. In 
a now infamous and entertaining ex-
ample, Messerli (2012) published a 
study in the New England Journal of 
Medicine showing a strong correla-
tion (r = .791) between chocolate con-

Figure 3. Scatterplot of popular and electoral vote percentages for US Pres-
idents 1828 to 2008. 
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sumption per capita and the number 
of Nobel laureates per 10 million per-
sons in 23 countries. A causal infer-
ence from the reported data indicated 
that an increase of 0.4kg of chocolate 
per capita per year would increase 
the number of Nobel prizes by one. 
The humor and entertainment value 
of that publication was as useful as 
the point: correlation is not causation. 
Conclusions about causation require 
controlled studies. In the case of the 
chocolate/Nobel study it is likely that 
some intervening variables such as 
per capita income, time and resources 
for sustained study activity, and edu-
cation in general may play some more 
plausible causal role. 

Why bother to learn these calcula-
tions

Once upon a time computers were 
not widely available as they are today. 
In that epoch it was necessary for both 
scientists and field practitioners – any-
one who wished to claim expertise 
or achieve any productivity – to learn 
to execute mathematical and statis-
tical calculations using only pencils 
and paper (and perhaps a slide-rule). 
Today computers are everywhere 
are calculations are rarely completed 
without the use of a computer. Why 
then should scientists and field prac-
titioners today have to be exposed to 
any suggestion that they learn to cal-

culate statistics such as the correlation 
coefficient? 

My answer: there is no expectation 
that scientists or field practitioners will 
ever again manually calculate any sta-
tistics in field practice. However, those 
who take the time to familiarize them-
selves with basic statisticians and ba-
sic calculations, and those who take 
the time to work through a few simple 
examples, will possess much stronger 
intuition and much greater expert un-
derstanding of the meaning of proba-
bilistic results. And many, if not most, 
professional and scientific conclusions 
are, in reality, probabilistic conclusions 
– including when those conclusions 
are reduced or simplified to categori-
cal conclusions. 

Professionals who do not take the time 
to develop their knowledge and intu-
ition about science and basic statistics 
will present a limited and flawed form 
of expertise at best, and will be less 
able to help other professionals and 
members of the public or information 
media to correctly understand their 
work and their conclusions. Moreover, 
there is a risk that pseudo-expertise 
will be accompanied by an obvious 
undertone of insecurity and phobic 
avoidance of concepts having to do 
with science, statistics or probabilities. 
In the absence of real expertise there is 
the very real danger that the void will 
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be filled with pretense and over-state-
ment around the strength of one’s con-
clusion, and this can lead only to pro-
fessional embarrassment when faced 
with the need for real discussion with 
other educated professionals. More-
over, in an age where artificial-intelli-
gence can begin to invite us to more 
completely outsource a wider variety 
of skills and judgments that former-
ly required trained and experienced 
human expertise, there is potential-
ly grave risk in neglecting to develop 
mathematical, statistical and analytic 
skills and intuition because this would 
require that we complete surrender 

our expertise to robots and machines. 
Said differently, if human profession-
als want to continue to enjoy the role 
of expert then it is our responsibility 
to develop our expertise and compe-
tence. Professionals who take the time 
to develop their intuition for science 
and skills for statistics, as the mathe-
matical language of science, are like-
ly enjoy and important advantages 
in marketplaces that are expected to 
enjoy an increasing range options to 
replace non-expert practitioners with 
autonomous systems while continu-
ing to require the involvement of hu-
man experts.
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