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Five-minute Science Lesson: 

Bayesian Analysis and Scientific Credibility 
Assessment Testing

by Raymond Nelson

Scientific tests are used to quantify any 
phenomena that cannot be subject to 
perfect deterministic observation or 
direct physical measurement. Because 
deception and truth-telling cannot be 
measured directly, and because any 
ability to observe deception or truth 
deterministically would obviate the 
need for testing, scientific credibility 
assessment tests are an example of the 
value and need for scientific tests to 
assist with intelligent decision making 
under uncertain conditions. Scientific 
tests are not expected to be infallible 
and are instead fundamentally depen-
dent upon statistics and probabilistic 
inference. Statistical and probabilistic 

inference can be thought of as exist-
ing in two important discussions: fre-
quentist inference, and Bayesian infer-
ence. 

Frequentist inference – concerned with 
counting the frequency of repeatable 
events, and with errors of measure-
ment when evaluating the universe 
of reality that is assumed to exist in 
one fixed way – has formed the basis 
of the scientific method of hypothesis 
testing for the greater part of the last 
century. Although useful for the pur-
pose of understanding measurement 
error, frequentist inference has proved 
to be a confusing basis for classifica-
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tion and decision-making. 

Bayesian inference – the basis of Bayes-
ian analysis was developed out of the 
need to make intelligent and quanti-
fied decisions under uncertain condi-
tions that are un-repeatable or unob-
servable, such as the most likely lo-
cation for a lost item, or the outcome 
of an election or athletic tournament. 
Unlike frequentist analysis, Bayesian 
inference can also be used to make in-
ferences about the likely cause of some 
observed data. Bayesian inference 
therefore has great practical value in 
all areas of science and decision-mak-
ing under uncertain conditions. 

Bayesian analysis uses both evidence, 
in the form of test data, and prob-
ability statements to make an evi-
dence-based estimate about some-
thing that is unknown or unobserv-
able. In Bayesian analysis, this is re-
ferred to as an unknown parameter, 

such as a class or category. Bayesian 
analysis is used in many scientific and 
statistical decision-making contexts. 
For example, Bayesian analysis can be 
used to filter email messages, to dis-
criminate between spam (junk email) 
and ham (useful email) when it is un-
known how an email recipient will 
actually classify a particular message. 
In the credibility assessment context, 
Bayesian analysis can be used to cal-
culate probability estimates for de-
ception or truth-telling when it is un-
known whether a person is actually 
truthful or deceptive. 

Bayesian analysis uses three input val-
ues: 1) a prior probability, 2) the test 
data, and 3) a likelihood function. The 
posterior probability is a statistical de-
scription of the unknown parameter 
of interest, such as the posterior prob-
ability of deception or truth-telling. 
Figure 1 shows a flow chart of the in-
puts and output of a Bayesian analysis.

Figure 1. Bayesian analysis
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The prior probability is a statistical or 
probability description of our knowl-
edge of the parameter of interest prior 
to completing the test and Bayesian 
analysis. Good information about the 
prior probability is sometimes avail-
able, though it often occurs that very 
little information is known to support 
one class or conclusion over another. 
The prior probability can be estimat-
ed from the number of possible out-
come classes when no prior informa-
tion, or very little good prior informa-
tion, is available. For example: when 
little prior information is available or 
known about whether an individual is 
actually deceptive or truthful, the pri-
or probability can be estimated from 
the possible conclusions: deception 
or truth-telling – for which the prior 
probabilities are .5 and .5.1,2 The pur-
pose of Bayesian analysis is to update 
this prior probability. 

Test data used as input for the Bayes-

ian analysis are after feature extraction 
and after reduction and aggregation 
of the data to numerical values that 
can have more practical value than raw 
data. In the polygraph testing context 
this means that input test data are the 
numerical scores for the grand total 
and question subtotals. 

A likelihood function is a mathematical 
device – often in the form of a formu-
la, algorithm, or reference table– used 
to calculate a numerical or statistical 
value for the test data. For example, 
ESS-M reference tables (Nelson, 2017) 
are a form of theoretical reference dis-
tribution – calculated using facts and 
information subject to mathematical 
and proof, under the analytic theory 
of the polygraph test3,4. In contrast, 
the likelihood function for ESS scores 
of polygraph test data is a set of nor-
mative reference tables (Nelson, et al., 
2011), calculated from empirical sam-
pling data consisting of confirmed 

1     These prior probabilities can also be referred to as a prior probability distribution because the values .5 and .5 represent the dis-
tribution of all of the possible classes. 

2     These probabilities can also be transformed mathematically so they can be expressed as the odds. This is done by taking each 
of	the	probabilities	and	dividing	by	its	mathematical	compliment	(e.g.,	odds	=	.5	/	(1	-	.5)	=	1).	When	done	this	way,	the	odds	are	
expressed in relation to the value 1 (e.g., 1 to 1). Also, odds can be transformed mathematically to probabilities by dividing the 
odds	by	odds	+	1.	For	example:	probability	=	1	/	(1	+	1)	=	.5.	

3 The basic analytic theory of the polygraph test holds that greater changes in physiological activity are loaded at different types 
of test stimuli as function of deception or truth-telling in response to the relevant or investigation target stimuli. Refer to Nelson 
(2016) for a more complete discussion of this analytic theory of polygraph testing. 

4 ESS scores are three-position (+ 0 or –) non-parametric values that are assigned according to the differential loading of changes 
in physiological activity in response to relevant and comparison stimuli, using multiple recording sensors and multiple itera-
tions of a stimulus question sequence that includes multiple versions of the test questions. The resulting ESS-M distribution is a 
multinomial distribution and can be used as a likelihood function for Bayesian analysis with any population or group for which 
the basic theory of the polygraph can be assumed to hold true. 
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guilty and confirmed innocent field 
cases5. 

Bayesian analysis involves the use 
of Bayes’ theorem. Bayes theorem is 
among the most practical and useful 
of all mathematical and statistical for-
mulae. It is used to update or improve 
the effectiveness of conclusions, pred-
ications, or classifications compared 
to those that could be made using 
only the prior probability distribution. 
An important aspect of Bayesian anal-
ysis is that the notion of probability is 
taken to mean degree of belief in an 
idea or conclusion. This is in contrast 
to the frequentist notion of probabil-
ity which refers to a proportion of ob-
served outcomes – which limits the dis-
cussion of probabilities to things that 
can be observed and repeated6. 

The output or result of Bayesian anal-
ysis is a posterior probability. This can 
also be thought of as a posterior proba-
bility distribution when considering all 
posterior probabilities for all possible 

classes. A convenient aspect of Bayes-
ian statistical analysis is that statistical 
or probabilistic results from Bayesian 
analysis can be intuitively useful be-
cause they can provide a direct and 
convenient estimate of the effect size 
of interest, for example: the odds of de-
ception or odds of truth-telling.

Experts who work with and use scien-
tific credibility assessment (lie detec-
tion) tests, and the results from these 
tests, can be expected to have some 
reasonable foundation for under-
standing the basics of Bayesian analy-
sis and statistical decision-making un-
der uncertain conditions. It is hoped 
that this short description will be of 
some value to field practitioners who 
wish to increase their fluency with 
these concepts.

5 Empirical normative data can be intuitively useful because information is obtained from actual tests with actual persons. Empir-
ical norms are of unknown representativeness when used with persons outside the normative sampling group. Also, sampling 
distributions are always an imperfect representation of the population distribution, though we can rely on the law of large num-
bers and the use of numerous sampling distributions to converge towards the population group of interest. 

6 Frequentist statistical methods cannot be used to assign a probability to events that cannot be repeated, such as sports out-
comes or election outcomes. Also, frequentist statistical methods cannot be used to assign probabilities to ideas such as hy-
potheses or class decisions. For this reason, Bayesian analytics has important practical utility because it can be used to produce 
reproducible probability estimates for many practical and interesting things that cannot be observed and counted, such as the 
most likelihood of deception or truth-telling as the cause for some observed data during polygraphic credibility assessment 
testing. 
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