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Abstract

This project is a comparison of accuracy effects for the ESS and three-position scores using tra-
ditional numerical cutscores and multinomial cutscores. Effects studied include test sensitivity,
specificity, false-positive and false negative error rates, in addition to positive-predictive-value, neg-
ative-predictive value, the proportions of correct classification for guilty and innocent cases and the
unweighted mean of correct and inconclusive cases. An archival samples of n=100 confirmed field
cases using the Federal ZCT format were used, permitting intuitive comparison with previously
published effects. A second sample of n=60 confirmed field cases using the Federal ZCT format was
also included in the analysis. Responses were extracted from the recorded data and scores were
assigned via an automated ESS algorithm that was designed to closely approximate the feature
extraction process used by human experts when manual scoring polygraph data. ESS scores were
then converted to three-position scores. A parametric bootstrap was used to calculate statistical
confidence intervals at the .025 and .975 percentiles, and to estimate the variance of observed
effects. A mixed-effects ANOVA procedure was used to evaluate the four treatments of the sample
cases: ESS and three-position scores with traditional and multinomial cutscores. Accuracy for the
four treatments when excluding inconclusive cases was similar for positive-predictive-value, nega-
tive-predictive-value, and the proportions of correct classifications excluding inconclusive results.
Use of multinomial cutscores contributed to a statistically significant reduction of inconclusive re-
sults, and statistically significant increases in test sensitivity to deception and test specificity to
truth-telling for both ESS and three-position scores. None of classifications of the individual cases
were observed to change from deceptive to truthful or from truthful to deceptive for any of the four
treatments with either of the two archival samples.

Introduction described in a comparison of accuracy effects

(Nelson, Krapohl & Handler, 2008) for poly-

The Empirical Scoring System (ESS; Nelson graph examiner trainees with those from expe-
et al., 2011) is an evidence-based, standard- rienced examiners. The ESS was updated (Nel-
ized and statistically referenced method for son, 2017a; 2017b) to make use of a Bayesian
the analysis of psychophysiological detection classifier and cutscores that were obtained

of deception (PDD) test data. The ESS can be
thought of as a modification of the Federal
three-position scoring method (National Cen-
ter for Credibility Assessment, 2017), which
can itself be thought of as a modification of
the Federal seven-position scoring method.
Previous studies on the ESS indicate that it

from a multinomial reference distribution
that was calculated under the analytic theo-
ry of PDD testing (Nelson, 2106). Multinomi-
al cutscores and reference distributions were
subsequently calculated for the three-position
scoring method (Nelson, 2018a). ESS is widely

provides accuracy effects similar to the Fed- used by polygraph examiners across the U.S.
eral seven-position method with the practical and worldwide, including professionals in pri-
reliability and intuition of the three-position vate practice and in municipal, state and fed-
scoring method. Results for the ESS were first eral law enforcement/investigation agencies.
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The ESS differs from the three-position scor-
ing method in three main ways. First, ESS
scores are assigned while doubling the value
of all EDA scores. This is so that electrodermal
scores are weighted in a manner that approx-
imates the structural and statistical functions
described in the scientific literature on PDD
test data analysis and computer algorithm de-
velopment Nelson (2019). A second important
difference is that the ESS makes use of statis-
tically referenced numerical cutscores in lieu
of traditional cutscores that were derived heu-
ristically for the seven-position scoring meth-
od. Another third difference is that different
agencies have implemented the ESS with dif-
ferent decision rules, according to operational
and mission objectives.

Decision rules define the structured proce-
dures used to interpret and parse the cate-
gorical test result from numerical and sta-
tistical information. [Refer to Nelson (2018b)
for a literature summary and description of
polygraph decision rules.] Commonly used de-
cision rules in PDD field practice include the
grand-total-rule (GTR), two-stage-rule (TSR),
and the Federal Zone Rule (FZR) and the sub-
total-score-rule (SSR). Among these the GTR
has been shown consistently to provide the
highest level of classification accuracy for sin-
gle issue exams, while the SSR has been re-
garded by many polygraph agencies and field
examiners as the optimal decision rule for
multiple issue screening exams.

This project is a comparison of accuracy ef-
fects for ESS using the GTR with traditional
cutscores and multinomial cutscores. Two ar-
chival samples were used in this project, per-
mitting intuitive comparison with previously
published accuracy effects. Also studied were
classification accuracy effects with three-posi-
tion scores.

Methods and Materials

Data

Data for this project were a confirmed field
sample of n=100 exams that were conduct-
ed using the Federal Zone Comparison Test
(FZCT) format (Department of Defense, 2006).
This sample was previously used by Krapohl
and Cushman (2006) with Federal seven-posi-
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tion scores, and later by Nelson, Krapohl and
Handler (2008) in an early study on the ESS.
Sample cases were conducted by a variety of
federal, state, and municipal law enforcement
agency and were subsequently included in the
confirmed case archive at the Department of
Defense Polygraph Institute (now the National
Center for Credibility Assessment). The FZCT
is a three-question, event-specific test format,
that is recognized as among the most useful
test formats for the investigation of criminal in-
cidents. All cases consisted of three iterations
of a question sequence that included three
relevant-questions (RQs) and three compari-
son-questions (CQs) in addition to other pro-
cedural questions that are not subject to nu-
merical or statistical analysis. Field polygraph
examiners refer to the repetitions or iterations
of the question sequence as “charts,” with ref-
erence to old-time polygraph instruments that
plotted physiological data through capillary
ink pens onto rolled chart paper. Human ex-
pert, when scoring the sample cases manual-
ly, have described some of the sample cases as
challenging. Although perhaps not ideal, use
of this same sample data can provide practical
and intuitive understanding of differences in
accuracy effects for different test data analysis
methods. [Refer to Nelson (2015) and Depart-
ment of Defense (2006) for general information
on the comparison question test and how the
sample cases were conducted.]

All cases included the standardized array of
PDD sensors, for which physiological respons-
es and numerical scores would be extract-
ed, including: upper and lower respiration
sensors, an electrodermal activity sensor,
and cardiovascular activity sensor. Acquired
knowledge pertaining to the FZCT format, in
addition to basic principles and procedures,
have been generalized to other PDD formats
including single-issue and multiple-issue
use-cases with two, three and four RQs. This
sample was used in the initial study and de-
velopment of empirical reference distributions
for the ESS, and was subsequently used in an
accuracy demonstration of the multinomial
update to the ESS-M (Nelson, 2017b).

A second archival sample was obtained, con-
sisting of n=60 confirmed field exams using the
FZCT format. These exams were also includ-
ed in the DoDPI (now NCCA) confirmed case
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archive. This sample was previously used as
the holdout validation sample in the develop-
ment of the OSS scoring algorithms (Krapohl
& McManus, 1999, Krapohl, 2002, Nelson
Krapohl & Handler, 2008), and was also used
in a study of manual scoring with the Feder-
al seven-position and ESS scoring methods.
All exams in the second dataset consisted of
three iterations of a question sequence that
included three RQs and three CQs in addition
to other procedural questions. Similar to the
first archival sample, these examinations were
conducted by a variety of municipal, state and
federal law enforcement agencies.

Analysis

Sample data were analyzed using an automat-
ed version of the ESS. All tests data analysis
methods — regardless of whether polygraph or
other form of test — will consist of similar func-
tions, feature extraction, numerical transfor-
mation and data reduction, use of some form
of likelihood function or statistical classifier,
and structured procedures for the interpreta-
tion and classification of result. Feature ex-
traction refers to the identification of useful
or diagnostic information in the recorded test
data, and the extraction or separation of this
information from other non-useful informa-
tion or noise. Numerical transformation, when
manually scoring polygraph test data, is the
conversion of observed physiological respons-
es to numerical values — using a system of [+,
0, -] integers. The simplest form of likelihood
function is a numerical cutscore for which
classification effects can be known, including
true-positive (TP), true-negative (TN), false-pos-
itive (FP) and false-negative (FN) outcomes).
Another form of likelihood function will map
or obtain numerical cutscores to either an em-
pirical or a theoretical reference distribution —
both of which are available in publications for
the ESS for which a multinomial reference dis-
tribution can be calculated under the analytic
theory of PDD testing. Regardless of the form
of likelihood function, parsing a categorical re-
sult from numerical and statistical test data
requires the use of a structured decision rule.
The automated ESS was designed to replicate
objectively the procedures used by human ex-
perts when manually scoring PDD test data,
including feature extraction, selection of RQ
and CQ analysis spots, assignment and aggre-
gation of integer scores, numerical cutscores,
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and decision rules.
Signal processing

Time-series data for all sample cases were ex-
ported to the NCCA ASCII format (Editorial
Staff, 2019) and imported into the R Statisti-
cal Computing Language and Environment (R
Core Team, 2019) to complete the signal pro-
cessing, feature extraction, and data analysis.
Signal processing of the digitized data was
completed at a data rate of 30 cycles per sec-
ond (cps) for all recorded sensors. Respiration
data were subject to a smoothing filter, consis-
tent with previous publications, consisting of
a first-order Butterworth type low-pass filter
(Butterworth, 1930) with a corner frequency
of .886Hz (equivalent to a moving average fil-
ter with a .5 second window). Smoothing fil-
ters of this type have been shown to improve
the correlation and diagnostic coefficients ob-
tained from respiration data (Nelson & Han-
dler, 2012).

All examinations were conducted using Ax-
citon computerized polygraph systems that
included a hardware-based high-pass filter
(auto-centering EDA) option in addition to the
manually-centered EDA option. Discussion
with field practitioners revealed a common
belief that field practices favored the use of
manually centered EDA at the time the exam-
inations were conducted. This may have been
a result of the fact that engineering specifica-
tions of hardware-based high-pass filter of old-
time analog polygraph instruments was large-
ly undocumented as to the corner frequencies
or time-constants of the filter design. Similar-
ly, the corner frequency and time-constant for
the Axciton computerized polygraph system
has been described in previous publications as
unknown (National Research Council, 2003).
No information was captured or recorded re-
garding the selection of the EDA mode for the
sample cases. A consequence of this is that it
is possible that some of the sample cases were
recorded using the hardware-based high-pass
filter, and no attempt was made to determine
the EDA mode through visual inspection. For
this reason, no high-pass filter was used for
the EDA data, and signal processing for EDA
data was limited to the reduction of high-
frequency noise through a first-order Butter-
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worth type low-pass filter with a corner fre-
quency of .886Hz.

Cardio data includes both low-frequency
blood-pressure information and higher fre-
quency pulse rate information. Because of the
need to avoid altering or disrupting diastolic
and systolic cardio peaks, cardio data was
not subject to additional signal processing or
smoothing.

The NCCA ASCII specification makes use of
dimensionless units that are not associated
with a standardized physical measurement.
For this reason, scaling of the data has no ef-
fect on analytic results for individual cases or
for this analysis.

Feature extraction

Feature extraction was accomplished using
an automated procedure intended to replicate
that used by human experts when manual-
ly scoring PDD data. Physiological reactions
were evaluated using a 15 second evaluation
window (EW) for all recording sensors. This
EW is thought to be sufficient to observe most
physiological responses to test stimuli and
is regarded as somewhat robust for persons
with common difficulties with sustained atten-
tion. For EDA and cardio data, a response-on-
set-window (ROW) was defined as from stim-
ulus onset to five seconds after the point of
verbal answer, or five seconds after stimulus
offset if there was no recorded verbal answer.

Respiration feature extraction. For respira-
tion data, information was excluded from the
feature extraction for 1.5 seconds prior to and
1.5 seconds following the recorded point of ver-
bal answer. This was to avoid the inclusion of
commonly occurring answering distortions in
the respiration feature extraction. Respiration
data were measured using the respiration line
excursion (RLE) — the sum of absolute change
for each successive pair of respiration samples
— using a sliding window of three seconds over
the 15 second EW. For respiration rates in the
normal range (10 to 22 cycles per minute) the
sliding window would encompass 2 to 2 res-
piration cycles. The respiration measurement
was the mean of all three second windows
during the EW. For the 15 second EW at the 30
cps data rate, the feature extraction value was
the means of the (15 - 3) * 30 = 360 three-sec-
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ond segments. Use of a sliding window in this
manner means that feature extraction values
are not dependent on the length of the EW
and can be easily compared and optimized for
different EW lengths — leading to potentially
easier optimization of the EW. The response
feature of interest is a reduction or suppres-
sion of respiration activity, that is expected to
occur when a person attempts to conceal, or to
avoid revealing or telegraphic, their deception.
Although the automated feature extraction al-
gorithm uses a dimensionless quantification
of the RLE, human evaluators will observe
respiration responses visually in plotted/dis-
played waveform patterns — as a subtle reduc-
tion of the respiration amplitude and as a sub-
tle slowing of respiration rate.

EDA feature extraction. For EDA data, infor-
mation was evaluated from stimulus onset to
the end of the EW. Response peaks were iden-
tified as the change in EDA slope from posi-
tive (upward) to negative (downward) from 2.5
seconds after stimulus onset to the end of the
EW. One additional response peak was also
evaluated following the end of the EW if the
EDA slope remained positive from 13.5 sec-
onds to the first peak after the EW. This per-
mits the extraction of information to the peak
of response instead of the end of the somewhat
arbitrary EW and also prevents the evaluation
of a response peak after the EDA slope has
turned negative late in the EW. Response on-
sets were identified as the onset of a positive
slope segment (i.e., a change from negative or
zero slope to positive slope) from a .5 second
latency point (LP) to the end of the ROW. Use
of the LP eliminates the need to evaluate the
EDA slope prior to stimulus onset and ensures
that responses that begin immediately with
stimulus onset are not evaluated. When the
EDA slope was already positive prior to stim-
ulus onset and remained positive throughout
the ROW a response onset was imputed statis-
tically as a function of a statistically significant
change in positive slope variance (with alpha
= .001) for two adjacent one-second moving
windows from the LP to the end of the ROW.
This can be visualized by human experts as a
substantial change in upward angle within a
positive slope segment during the ROW. The
extracted value was the maximum difference
between a response peak and a preceding re-
sponse onset. In simplistic terms the EDA re-
sponse feature can be visualized as the max-
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imum distance from a response onset during
the ROW, after the LP, to a peak point during
the EW.

Cardio feature extraction. Feature extraction
for the cardio data was similar to that for EDA,
but with two differences. Cardio data was ex-
tracted from a moving average of all recorded
cardio data points. The moving average was
calculated by passing the cardio data four
times through a moving average filter of .5 sec-
onds. The result of the moving average filter
can be visualized as the mid-line between sys-
tolic and diastolic peaks. Inclusion of one ad-
dition response peak, after the 15 second EW,
was retained if the EDA slope remained pos-
itive from 14.5 seconds to the first response
peak after the EW. This change was needed
improve the ability of the feature extraction
procedure to tolerate the potential complexi-
ty of cardiovascular activity, which can some-
times be influenced by respiration activity in
addition to cognitive, emotional and behav-
ioral factors. Similar to the EDA feature, the
cardio response feature can be visualized as
the maximum distance from a response onset
during the ROW to a peak point during the EW.
One difference between the automated feature
extraction and manual feature extraction is
that human examiner will most often evaluate
the cardio data at the diastolic baseline. This
procedure is thought to improve the reliabili-
ty of visual/manual feature extraction and is
premised on a strong correlation between the
information contained in the diastolic line and
mid-line.

Numerical transformation and data reduc-
tion. All physiological responses were mea-
sured in dimensionless units — not intended to
represent a physical quantity. This permits the
scaling of data for visual display and plotting
with no effect on the numerical transforma-
tions involving the comparison of RQ and CQ
values. Data were assumed to be ordinal and
intervalic. For EDA and cardio data greater
extracted values were associated with greater
changes in physiological activity. For respira-
tion data the feature of interest to PDD testing
is a reduction of respiration activity in respira-
tion activity in response to RQs and CQs. This
meant that smaller respiration values were as-
sociated with a greater change in physiological
activity for the respiration scores.
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Assumptions and constraints. Recorded
physiological data and extracted values were
not assumed to be linear, and no ratio as-
sumptions were employed in the transforma-
tion of extracted response values to ESS inte-
ger values. However, some linear constraints
were employed to prevent the extraction and
scoring of extreme values. Extreme values
were defined as less than 2% of the maximum
scaling value for visual display and plotting.
Values smaller than the 2% threshold were re-
garded as potential noise, and therefore less
likely to be an authentic response to the test
stimuli, and were not used in the transforma-
tion of extracted values to ESS scores. Leave-
one-out z-scores were calculated for all ex-
tracted values for each recording sensor within
each recorded test chart. For EDA and cardio
data z-scores in excess of 10 (i.e., 10 standard
deviations) were regarded as data artifacts,
possibly resulting from physical movement,
and were excluded from the analysis. None
of the responses exceeeded this value (z > 10)
for this sampling data, though other samples
have included response artifacts in excess of
10 standard deviations. Extracted response
values were assumed to be monotonic with
changes in physiology. That is, greater chang-
es in physiological activity were assumed to
be associated with differences in the extracted
numerical values.

ESS integer scores. ESS integer scores were
assigned using a three position scale of signed
values [+, O, -] similar to the procedure for
the three-position scoring method. One differ-
ence between ESS scores and three-position
scores is that ESS scores are obtained using
only the primary response feature whereas the
three-position and seven-position methods
permit the combined use of primary and sec-
ondary responses (National Center for Credi-
bility Assessment, 2017).

ESS integer scores were assigned to each RQ
after comparing after comparing the RQ with a
paired CQ. RQ and CQ pairs were selected via
automated algorithm using the procedure de-
scribed by Nelson (2017c). FZCT cases in the
sampling data consisted of three RQs — named
RS, R7, and R10. For each recording sensor
RS is compared to either adjacent CQ (C4 pre-
ceding the RQ or C6 subsequent to the RQ) de-
pending on which CQ has the greater change
in physiological activity. Use of two CQs for R5
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in this manner is thought to benefit innocent/
truthful persons in that a change in physio-
logical activity at the RQ will have to exceed
that of two CQs before deceptive score can be
assigned — also will also provide them with two
opportunities to produce a change in physi-
ological activity at a CQ that exceeds that of
the RQ. R7 is compared only to the preceding
CQ (C6), and R10 is also compared only with
the preceding CQ. Field practices permit the
rotation of some questions during the various
iterations of the test question sequence; this is
intended to distribute or balance effects relat-
ed to the position of each question in the se-
quence and also to dissuade examinees from
memorizing or habituating to the question
sequence. Regardless of the rotation of ques-
tions, the first RQ in the sequence is compared
to the first two CQs, while the second and third
RQs are compared only to the preceding CQs.
Each paired RQ and CQ is sometimes referred
to by polygraph field examiners as an analysis
spot.

Respiration constraints and numerical
scores. For respiration data, ESS integer
scores of + sign value, indicative of truth-tell-
ing, were assigned when a greater change in
physiology was observed in response to the
CQ, while scores of — sign value, indicative
of deception, were assigned when a greater
change in physiology was observed in response
to the RQ. In contrast to the EDA and cardio
data, greater changes physiology are observed
in respiration data as smaller extracted val-
ues — indicative of a greater reduction or sup-
pression of respiration activity. To prevent the
analysis of extreme changes or extreme values
that may result from voluntary or deliberate
activity — such as that sometimes observed by
persons attempting to alter or fake their test
data and results — a maximum respiration
constraint ratio of 1.5:1 was employed on the
RQ and CQ analysis spots. This constraint is
intended to prevent the assignment of a signed
integer score when a takes a deep breath or
holds their breath in response to an RQ or
CQ. Additionally, a minimum respiration con-
straint ratio of 1.25:1 was used to prevent the
assignment of numerical score to response
differences that are not due to the test stimuli
— and which may be considered noise resulting
from either normal/uncontrolled variation in
respiration activity, or due to observed insta-
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bility that some persons exhibit in their respi-
ration rate and amplitude.

ESS scores from the abdominal and thoracic
respiration sensors are combined into a sin-
gle ESS score using the procedure described
by Nelson and Krapohl (2019). This procedure
is common to other manual scoring meth-
ods and will be familiar to many field practi-
tioners. Scores are combined to a value of zero
(0) when the sign values are opposite for the
thoracic and abdominal sensors, and are col-
lapsed to a single singed score when they are
not opposite.

EDA and cardio constraints and numerical
scores. For EDA and cardio data, ESS integer
scores of + sign value, indicative of truth-tell-
ing, were assigned when a greater change in
physiological activity was observed at the CQ.
Greater changes in physiology are observed in
EDA and cardio data as larger extracted val-
ues. Scores of — sign value, indicative of decep-
tion, were assigned when a greater change in
physiological activity was observed in response
to the RQ. Scores of 0 (0 sign value) were as-
signed when there was no observable or ap-
preciable difference between the responses to
an RQ and CQ analysis spot. A minimum con-
straint was used to prevent the assignment of
score to EDA and cardio for RQ and CQ anal-
ysis spots for which the observed difference in
response magnitude was small. The constraint
selected for this project was a ratio of 1.05:1,
for RQ and CQ analysis spots. This constraint
was the result of step-wise optimization of cor-
relation and receiver operating characteristic
(ROC) coefficients with other data. Differenc-
es smaller than 5% are more likely to be the
result of physiological noise, and may also be
the result of unknown influence on the EDA
data when using an auto-centering EDA solu-
tion for which the design characteristics are
unknown or undocumented.

Weighted EDA scores. ESS integer scores for
EDA data are weighted more than for other re-
cording sensors. This is accomplished by dou-
bling all + and — integer values to +2 and -2.
The effect of this is to approximate the struc-
tural and statistical coefficients that have
been reported in numerous studies on PDD
data analysis and computer algorithm devel-
opment over a period of nearly five decades.
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[Refer to Nelson (2019) for a literature survey
on structural and statistical coefficients for
respiration, EDA, cardio and vasomotor data.]

Data reduction. Because ESS scores are
signed integer values, data reduction is a sim-
ple matter of summation. Subtotal scores are
summed for each RQ, including all sensors
and all iterations of the question sequence.
Subtotal scores are then summed for a grand
total score. Although field practices and oth-
er analyses may often make use of subtotal
scores, this project involves the analysis of
only the grand total score.

Multinomial likelihood function and

numerical cutscores

Likelihood function. The simplest form of
likelihood function is a numerical cutscore
that correspond to a known empirical likeli-
hood of a correct or incorrect classification.
Formally, a likelihood function is a tool — in-
cluding possibly a mathematical or statistical
formula, computer function or published ref-
erence table — that can be used to calculate
or obtain a statistical value for the observed
test data. Cutscores for ESS scores can be ob-
tained from multinomial reference tables and
Bayesian analysis.

Both grand total cutscores and subtotal cut-
scores can be used to classify the test data as
either indicative of deception or truth-telling
— the contextual allegory of the more general
terms positive and negative. Published stud-
ies have consistently shown that grand total
scores provide the highest rates of classifica-
tion accuracy. [Refer to APA (2011) for a sum-
mary of effect sizes for validated polygraph
techniques.] This is not be surprising when
considering that grand total scores make use
of more information than the question subtotal
scores and will therefore provide reduced vari-
ation and more opportunity for data to con-
verge. This sometimes referred to as the weak
law of large numbers (Dekking, 2005) — a re-
lated to the central limit theorem which states
that the means of randomly selected samples
will be normally distributed and will converge
towards the unknown population mean. It is
the main reason that it is advantageous to
have many samples (for which meta-analysis
can also be used) and the reason that larger
samples are preferred over smaller samples.
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The question of great importance is this ques-
tion: what numerical cutscores are most ef-
fective or most efficient to classify test results
as indicative of deception or truth-telling? Or,
more precisely, what probabilistic inferences
about deception and truth-telling can be made
about the numerical cutscores and resulting
classifications? Because scientific testing and
scientific test data analysis is inherently prob-
abilistic (given that the purpose of any scien-
tific test is to quantify a phenomena of interest
that cannot be subject to physical measure-
ment), field examiners and program manag-
ers will be primarily interested in this more
practical version of the same question: what
numerical cutscores will provide an optimal
experience of correct vs incorrect outcomes?
In scientific terms this is the question of se-
lecting numerical cutscores that will optimize
the desired observation of TN, TP, FN, and FP
results. In the polygraph context the answer to
this question will be considered with regard to
the additional outcome potential for inconclu-
sive outcomes.

Analytic theory of polygraph testing. The
analytic theory of polygraph testing — under
which the multinomial distributions of ESS
and three-position scores are calculated -
holds that greater changes in physiology will
be loaded at different types of test stimuli (i.e.,
relevant and comparison questions) as a func-
tion of deception or truth-telling in response to
the relevant or target stimuli. [Refer to Nelson
(2016) for a discussion of the analytic theory of
the polygraph test.] In polygraph testing, some
uncontrolled variation is expected at the level
of each sensor and each presentation of each
RQ (e.g., it is not expected that scores will be
of uniform sign value). To the degree that the
theory of PDD testing is valid (supported by
evidence), and PDD sensors record valid data
(data and scores that are loaded as a func-
tion of deception or truth-telling and not mere
randomness) the convergence of subtotal and
grand total scores can be used to make statis-
tical inferences about reality — the degree to
which a person is probably deceptive or prob-
ably truthful. In other words, it is the aggre-
gation of subtotal and grand total scores that
will be used to classify the test data as indica-
tive of deception or indicative of truth-telling.

Aggregation of scores from multiple RQ, multi-
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ple CQs, multiple recording sensors, and mul-
tiple iterations of the question relies on the
law-of-large-numbers (LLN) - which for the
aggregation of PDD scores will converge to be-
come loaded to a value of either + or — sign val-
ue as a function of deception or truth-telling in
response to the RQs. The LLN also provides in-
sight as to why overall classification accuracy
with grand total scores is expected to continue
to outperform overall classification accuracy
with subtotal scores.

Multinomial distribution is calculated un-
der the analytic theory. The mathematical/
statistical distribution of data values (i.e.,
all possible ESS scores and the probabilities
associated with each) can be characterized
empirically, by obtaining data from reality. A
distribution of ESS scores can also be calcu-
lated using only information subject to math-
ematical and logical proof under a proposed
theory. Mathematical characterization of a
distribution of scores is often accomplished
under the null-hypothesis to a theory. This is
because it is often difficult (read: impossible)
to mathematically characterize a proposed
theory while the (null-hypothesis) can often be
easily characterized as a distribution of ran-
dom values. A well-known distribution is the
Gaussian or normal (bell-curved) distribution.
We use our mathematical knowledge of statis-
tical distribution to make inferences about in-
dividual cases relative to the population of all
possibilities that is represented by the statisti-
cal distribution. In the polygraph context, be-
cause there is a finite, though large, number
of all possible combinations of ESS scores for
all iterations of all questions and all sensors,
the statistical distribution of ESS scores is
not Gaussian, but is multinomial. The distri-
bution of ESS scores is multinomial because
there are three possible values for each score.

The multinomial distribution of ESS scores
will exhibit a bell shape, somewhat similar to
the normal distribution, though with discrete
values for each possible test score. Under the
null-hypotheses — that scores are not loaded
in any systematic way and can therefore be
characterized as random — most multinomial
scores will occur near the middle of the distri-
bution (near zero) with only one possible way
to achieve the maximum or minimum score
(uniform + or — scores for every iteration of ev-
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ery question and every sensor). There is a fi-
nite, though large, number of possible combi-
nations of [+, O, -] scores for each exam. There
is also a finite number of ways to arrange the
[+, O, -] scores to achieve each possible score.

The multinomial distribution of scores is a list
of all possible scores and the probability asso-
ciated with each; it can be calculated using a
combinatoric formula. It can also be calculated
(sometimes more easily and quickly) via Mon-
te-Carlo simulation. (Multinomial calculations
during the Manhattan Project were an impetus
for the development of Monte Carlo statistical
methods.) The multinomial distributions for
ESS and three-position scores (Nelson, 2017a;
2018a) are an exact calculation. Most impor-
tantly, our knowledge and information about
the multinomial distribution of ESS scores can
be used to make statistical inferences about
reality (i.e., classifications under uncertainty).
All that is necessary is to first calculate the
likelihood statistic for an observed score, if
loaded for deception or truth-telling, and then
use the statistical value from the multinomial
distribution as a likelihood function in Bayes-
ian analysis of the likelihood of deception or
truth-telling.

In addition to ESS scores, a multinomial
distributions have also been published for
three-position scores (Nelson, 2018a). This
is possible because the three-position meth-
od relies on the bigger-is-better rule for which
reactions that are recorded and measured,
regardless of whether using standardized or
dimensionless/arbitrary measurement units,
are objectively either larger, smaller or equiv-
alent. These differences are larger because
there is mathematical proof that successive
numbers, whether positive or negative, can in
factual reality, represent in larger and smaller
quantities — including when those quantities
are not assigned a standardized measurement
unit. For this reason, results in this analysis
were also calculated for grand total scores of
Federal three position scores. Unfortunately,
no multinomial distribution exists for Federal
seven-position scores — due to arbitrary deci-
sions (i.e., without mathematical proof) as to
the differences in physiological activity that
correspond to the seven-position scale values.
Automation of seven-position scores cannot be
accomplished using only facts and informa-
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tion subject to mathematical and logical proof,
and for this reason questions about classifi-
cation accuracy of seven-position grand total
score were not addressed in this project.

Bayesian multinomial cutscores. Something
that would be of great convenience would be
to determine numerical cutscores that pro-
vide both a statistical classifier and also pro-
vide information about the practical meaning
of the probabilistic strength of the classifica-
tion. Multinomial cutscores for ESS cores (and
three-position scores) together with Bayesian
analysis do just that. Whereas early work on
polygraph algorithms relied on statistical clas-
sifiers that were not intended to offer practical
intuition or practical inference, multinomial
cutscores, calculated using Bayesian meth-
ods, quantify both the practical or system-
atic likelihoods associated with deception or
truth-telling in addition to the random error
estimate associated with different outcomes
that may result from the analysis of other data
not available to the present analysis. Bayes-
ian analysis is based on an assumption that
the available sample/test data are all of the
information available with which to make a
conclusion (Stone, 2013; Winkler, 1972). In
contrast, frequentist inference is based on an
assumption that the available sample/test
data are informative of the other data and in-
formation that could potentially be obtained
from the universe and reality as it pertains
to the individual and the behavioral target of
a PDD investigation. [See Nelson (2017d) for
a brief description of Bayesian analysis and
null-hypothesis significance testing.] It is of-
ten the case the scientists and scientific meth-
ods may utilize a combination of frequentist
and Bayesian assumptions. [Refer to Nelson
(2018c¢) for a description of Bayesian analysis
and the ESS-M.]

ESS Multinomial cutscores for grand total
scores. For grand total scores with FZCT sam-

ple cases the multinomial grand total cutscores
are - 3 or lower from deceptive classifications
and +3 or greater for truthful classifications.
There cutscores were selected from the multi-
nomial distribution of all possible ESS scores
(also the distribution of all possible ESS cut-
scores) at the point for which the random error
estimate — indicated by the lower-limit of the
Bayesian credible interval — provides a sta-
tistically significant likelihood (with alpha =
.05) of continuing to observe the same analyt-
ic result, despite expected variation, if it were
possible to repeat the examination or analysis
numerous times. [Refer to Nelson (2018d) for
a graphical illustration on the calculation of
Bayesian ESS-M cutscores. |

Multinomial cutscores for three-position
grand total scores. For three-position scores
the multinomial cutscores can be calculated
using the same Bayesian analytic methods as
for the ESS. Multinomial cutscores for grand
total scores of three-position scores are -2 or
lower for deceptive classifications and +2 or
greater for truthful classifications. [Also refer
to Nelson (2020) for a tabular demonstration
of ESS-M and three-position cutscores for a
range of prior probabilities and different al-
pha levels for deceptive and truthful clas-
sifications.] Table 1 shows the multinomi-
al cutscores for grand total scores with the
three-position scoring method, along with the
traditional cutscores for grand total scores.

Traditional cutscores. Traditional numerical
cutscores were selected initially for older and
more complex seven-position scoring methods;
they too have been initially derived empirically
and heuristically, and then subject to subse-
quent analysis for their classification efficien-
cy. Traditional cutscores for grand total scores
for FZCT exams are -6 or lower for deceptive
classifications and +6 or greater for truthful
classifications. An important consideration

Table 1. Traditional and multinomial cutscores for grand total scores with ESS and Federal 3-position scores.

Traditional

Multinomial

Deception Indicated

No Deception Indicated

Deception Indicated  No Deception Indicated

ESS -6 +6 -3 +3
Three-position -6 +6 -2 +2
Polygraph & Forensic Credibility Assessment , 2020, 49(2) 165
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here is that field practice standards for Feder-
al examiners who use the FZCT do not involve
the use of grand total scores alone, and will
instead involve a combination of grand total
and subtotal scores. Although it is tempting to
delve here and now into an empirical investi-
gation of those procedures, and although little
work has been published on the topic of deci-
sion rules since Senter and Dollins (2003), the
purpose of this project was only to advance
the available knowledge on effect sizes for nu-
merical cutscores for grand total scores.

Another important consideration is that tradi-
tional grand total cutscores are also used with
the three-position scoring method, leading to
higher rates of inconclusive results for the
three-position scoring method (APA, 2011) and
the need to devote additional resources toward
the resolution of these. Higher inconclusive
rates also create a context for the emergence
or reliance on covert solutions to reduce their
occurrence. Most importantly, traditional cut-
scores were first suggested decades ago for the
earlier and more complex seven-position scor-
ing methods, and have remained unchanged
despite scientific innovations in PDD data
analysis and despite known and expected dif-
ferences in the distribution of possible scores.
Continued use of these traditional cutscores is
a reflection of the fact that, although perhaps
sub-optimal, outcome effects are reasonably
known, and a more optimal solution, ideally
supported by both theory and scientific evi-
dence, has not yet been decided upon.

Interpretation and classification of analytic
results.

Interpretation, in this usage, refers to the
translation of numerical and statistical test
results into categorical test results for which
consistent and rational actionable decisions
can be made. Interpretation and classifica-
tion of test result is accomplished procedur-
ally through the use of structured decision
rules. Because this project involves the study
of grand total cutscores, the decision rule of
interest is the GTR.

Grand-total-rule. Execution of the GTR is a
matter of summing the subtotal scores to ob-
tain a grand total score. The grand total score
is then compared to the numerical cutscores
for grand total scores. Multinomial cutscores
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for the ESS and three-position methods are
shown in Table 3. For ESS the multinomial
cutscores are -3 or lower for deceptive classi-
fications, and +3 or greater for truthful classi-
fications. For three-position scores the multi-
nomial cutscores are -2 or lower for deceptive
classifications, and +2 or greater for truthful
classifications. These cutscores are assuming
a prior probability of 0.5. Traditional numer-
ical cutscores for grand total scores are -6 or
lower for deceptive classifications, and +6 or
greater for truthful classifications. Traditional
cutscores were derived for early seven-posi-
tion scoring methods. Intuition suggests they
may be inefficient for ESS and three-position
scores — leading to higher rates of inconclusive
results and over-reliance on subtotal scores.
Although the use of subtotal scores, in addi-
tion to grand total scores, may improve clas-
sification with deceptive cases, this will intro-
duce statistical multiplicity effects and may
bias overall accuracy in unfortunate or unin-
tended ways. For this reason, understanding
and selection of optimal grand total cutscores
may increase the accuracy effect sizes for the
FZCT cases.

Bayesian analytic classification of decep-
tion or truth-telling. Multinomial grand to-
tal cutscores, for both ESS and three-posi-
tion scores, provide a Bayesian posterior odds
(systematic error) estimate of approximately
2:1 deception and truth-telling, permitting a
1-alpha x 100% = 95% likelihood of observing
another analytic result of at least this value. In
practical terms, test scores at this level are suf-
ficient accept the notion that recorded physi-
ological activity is loaded systematically, and
to reject the notion that the scores are loaded
in a random or meaningless un-interpretable/
un-classifiable way. Although 2:1 odds may
not be spectacular, it is important to recognize
that classifications made at a score of +/- 2
or +/- 3 cannot, when considering the range
of the distribution of possible scores, be rea-
sonably expected to provide spectacular accu-
racy. Equally important, posterior odds of 2:1
may provide actionable knowledge for some
circumstances. For example: consider the in-
formation that the odds of a particular bridge
collapsing under weight are estimated at 2:1.
Many reasonable persons might be quite hes-
itant to make use of that bridge. Of course,
circumstances will also exist that may require
a stronger basis of actionable probabilistic in-
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formation than 2:1 posterior odds. For most
estimated prior probabilities, these needs can
be met via the multinomial reference data and
the selection of numerical cutscores that will
constrain systematic and random error rates
to required levels.

Results

Classifications for deception and truth-telling
were calculated for each of the two FZCT
samples. Because polygraph field practitioners
commonly discuss test accuracy effects in
terms of the proportions of correct, incorrect

and inconclusive conclusions, accuracy effects
are presented in this way — instead of using
effects sizes that compare classifications to
chance levels.

Results for sample 1, n=100 confirmed
FZCT field exams.

There were no cases that changed from pos-
itive to negative classification and no cases
that changed from negative to positive clas-
sification as a result of the scoring method
or type of cutscore for this sample (n=100) of
confirmed field cases. Table 2 shows the test

Table 2. Grand total classifications for n=100 FZCT field sample with ESS and three-position scores

ESS scores

Three-position scores

Traditional cutscores Multinomial cutscores Traditional cutscores Multinomial cutscores

Error [5] .05 (.02) [5] .05 (.02) [3] .03 (.02) [5] .05 (.02)
{.01 to .10} {.01 to .10} {.01 to .07} {.01 to .10}
Inconclusive [35] .35 (.08) [11] .11 (.05) [53] .53 (.09) [14] .14 (.05)
{-15 to .46} {.01 to .18} {.25 to .58} {.01 to .21}
Correct [60] .92 (.03) [84] .94 (.02) [44] .94 (.04) [81].94 (.03)
{.85 to .98} {.89 to .99} {.85 to .99} {.88 to .99}
Sensitivity (TP) [33] .66 (.07) [44] .88 (.05) [28] .56 (.07) [43] .86 (.05)
{53 to0 .79} {.78 to .96} {43 to .70} {.75 to .95}
Specificity (TN) [27] .54 (.07) [40] .80 (.06) [16] .32 (.07) [38] .76 (.06)
{.40 to .68} {.69 to .91} {19 to .46} {.64 to .87}
FN errors [2] .04 (.03) [2] .04 (.03) [1] .02 (.02) [2] .04 (.03)
{.01 to .10} {.01 to .10} {.01 to .07} {.01 to .10}
FP errors [3] .06 (.03) [3] .06 (.03) [2] .04 (.03) [3] .06 (.03)
{.01 to .13} {.01 to .13} {.01 to .10} {.01 to .13}
Inc guilty cases [15] .30 (.06) [4] .08 (.04) [21] .42 (.07) [5] .10 (.04)
{18 to .43} {.02 to .16} {-29 to .55} {.02 to .19}
Inc innocent cases [20] .40 (.07) [7] .14 (.05) [32] .64 (.07) [9] .18 (.05)
{.27 to .54} {.05 to .24} {.50 to .78} {.08 to .29}
PPV .92 (.05) .94 (.04) .93 (.05) .93 (.04)
{.82 to .99} {.86 to .99} {.83 to .99} {.86 to .99}
NPV .93 (.05) .95 (.03) .94 (.06) .95 (.03)
{.83 to .99} {.88 to .99} {.80 to .99} {.88 to .99}
Correct guilty cases .94 (.04) .96 (.03) .97 (.03) .96 (.03)
{.86 to .99} {.89 to .99} {.89 to .99} {.88 to .99}
Correct innocent cases .90 (.06) .93 (.04) .89 (.08) .93 (.04)
{.78 to .99} {.85 to .99} {72 to0 .99} {.84 to .99}
Unweighted inc. .35 (.05) .11 (.03) .53 (.05) .14 (.03)
{.26 to .44} {.05 to .18} {43 to .62} {.07 to .21}
Unweighted accuracy .92 (.03) .94 (.02) .93 (.04) .94 (.03)
{.85 to .98} {.89 to .99} {.84 to .99} {.88 to .99}

" Cells show the [frequency] in addition to the bootstrap estimate of the mean, (standard deviation) and {95% confidence interval}.

Polygraph & Forensic Credibility Assessment , 2020, 49(2)

167



Nelson

accuracy metrics for classifications using the
GTR with both traditional cutscores and mul-
tinomial cutscores for ESS and three-position
scores. Included in Table 2 are the error and
inconclusive rates, along with the proportion
of correct classifications excluding inconclu-
sive results. Also included in Table 2 are the
sensitivity (TP) and specificity (TN) rates, along
with FN and FP error rates. Other metrics in
Table 2 are the positive predictive value (PPV)
calculated as the proportion of true positive
results and all positive results, and negative
predictive value (NPV) which is the proportion
of true negative and all negative classifica-
tions. Also shown are the proportion of cor-
rect decisions for guilty and innocent cases
excluding inconclusive result, along with the
unweighted accuracy and unweighted incon-
clusive rates.

Inspection of the rows in Table 2 indicates that
the confidence intervals are substantially over-
lapping for the proportions of errors produced
by the four treatments. However, some differ-
ences can be observed in sensitivity, specific-
ity and inconclusive results. Both sensitivity
to deception and specificity to truth-telling
were greater for ESS scores and for multino-
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mial cutscores. Inconclusive rates were lower
for ESS scores and for multinomial cutscores.
The frequency of TP and TN results was great-
er for the ESS and multinomial cutscores and
lower for three-position and traditional cut-
scores. The frequencies of inconclusive results
were higher for traditional cutscores and lower
for multinomial cutscores.

Results for sample 2, n=60 confirmed FZCT
field exams.

For the second sample of n=60 FZCT cases,
there were no cases for which the classifica-
tion changed from positive to negative or from
negative to positive as a result of the scoring
method or cutscore type.

Inspection of the rows in Table 3 indicates
that results with the second FZCT sample par-
alleled those of the first sample. Confidence
intervals are substantially overlapping for the
accuracy metrics for correct classifications.
Sensitivity to deception and specificity to
truth-telling were greater for ESS scores and
for multinomial cutscores. Inconclusive rates
were lower for ESS scores and for multinomial
cutscores.
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Table 3 shows the same test accuracy metrics for ESS and Federal three position scores
for the second archival sample.

Table 3. Grand total classifications for n=60 FZCT field sample with ESS and three-position scores’

ESS scores Three-position scores

Traditional cutscores Multinomial cutscores  Traditional cutscores Multinomial cutscores

Error [2] .03 (.02) [2] .03 (.02) [1].02 (.02) [5] .08 (.04)
{.01 to .08} {.01 to .08} {.01 to .05} {.02 to .15}
Inconclusive [21] .35 (.10) [7]1.12 (.04) [32] .53 (.11) [6] .10 (.06)
{.10 to .50} {.01 to .13} {22 to .63} {.01 to .2}
Correct [37] .95 (.04) [51] .96 (.03) [27] .96 (.04) [49] .91 (.04)
{.87 to .99} {91 to .99} {.89 to .99} {.82 to .98}
Sensitivity (TP) [21] .68 (.09) [29] .94 (.05) [17] .55 (.09) [27] .90 (.05)
{.50 to .84} {.83 to .99} {.37 to .73} {.79 to .99}
Specificity (TN) [16] .53 (.09) [22] .73 (.08) [10] .33 (.09) [22] .73 (.08)
{.34 to .72} {.57 to .89} {.17 to .50} {.56 to .88}
FN errors [0] .03 (.03) [0] .03 (.03) [0] .03 (.03) [1] .03 (.03)
{.01to .11} {.01 to .11} {.01 to .11} {.01to .11}
FP errors [2] .07 (.05) [2] .07 (.05) [1] .03 (.03) [4] .13 (.06)
{.01to .17} {.01to .17} {.01 to .11} {.03 to .26}
Inc guilty cases [9] .29 (.08) [1].03 (.03) [13] .42 (.09) [2] .07 (.05)
{.14 to .46} {.01 to .11} {-24 to .60} {.01to .17}
Inc innocent cases [12] .40 (.09) [6] .20 (.07) [19] .64 (.09) [4] .14 (.06)
{.23 to .59} {.07 to .35} {45 to .81} {.03 to .27}
PPV .91 (.06) .94 (.04) .95 (.06) .87 (.06)
{77 to .99} {.83 to .99} {.82 to .99} {74 to .97}
NPV .94 (.06) .96 (.04) .91 (.09) .96 (.04)
{.80 to .99} {.85 to .99} {71 to .99} {.86 to .99}
Correct guilty cases .96 (.05) .97 (.03) .95 (.05) .96 (.03)
{.85 to .99} {.88 to .99} {.81 to .99} {.88 to .99}
Correct innocent cases .89 (.08) .92 (.06) .91 (.09) .85 (.07)
{71 to .99} {79 to .99} {.70 to .99} {.70 to .97}
Unweighted inc. .35 (.06) 12 (.04) .53 (.06) .10 (.04)
{.23 to .47} {.05 to .20} {-40 to .65} {.03 to .18}
Unweighted accuracy .92 (.05) .94 (.03) .93 (.05) .91 (.04)
{.82 to .99} {.87 to .99} {.81 to .99} {.82 to .98}

" Cells show the [frequency] in addition to the bootstrap estimate of the mean, (standard deviation) and {95% confidence interval}.
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Analysis of the combined sample data

A two-way repeat measures ANOVA (scoring
method x cutscore type) showed a significant
interaction for inconclusive results [F (1,636) =
329.671, (p < .001)], indicating that observed
differences in inconclusive rates for multino-
mial and traditional cutscores were different
for ESS and three position scores. One way
ANOVAs showed that the reduction of incon-
clusive results was statistically significant at
the a=.05 level for ESS scores [F (1,318) =4, (p
= .046)], and also for the three position scores
[F (1,318) = 12.308, (p < .001)].

A three-way repeat measures ANOVA for
correct positive and negative classifications
showed a significant three-way interaction,
for criterion state (guilty vs innocence), scor-
ing method (ESS, three-position) and cutscore
type (traditional, multinomial) [F (1,632) =
54.282, (p < .001)]. Table 4 shows the ANOVA
summary. All of the main effects and two-way
interactions were also significant in the three-
way ANOVA but were not interpretable due to
the significant interaction effects.

Because differences in accuracy effects as
function of cutscore type were the main interest
for this project, a series of one-way contrasts
was completed. For ESS scores the one-way
effect was statistically significant for increased
test sensitivity to deception [F (1,158) = 7.533,
(p = .007)] and for increased test specificity
to truth-telling [F (1,158) = 5.347, (p = .022)].

For three-position scores the one-way effect
was also statistically significant for both in-
creased test sensitivity to deception [F (1,158)
= 11.148, (p = .001)] and test specificity to
truth-telling [F (1,158) = 17.663, (p < .001)].

Risk ratios

To more adequately understand the differenc-
es in sensitivity, specificity and inconclusive
rates shown by these data, risk-ratios were
calculated after transforming the observed
proportions to odds. Risk ratios are based on
an assumption that observed proportions are
an estimate of the likelihood or strength of the
possibility of observing a similar outcome with
any randomly selected member of the popu-
lation, and are calculated as the ratio of the
proportions observed for two different meth-
ods. In this project the comparison of interest
is the risk-ratio for differences in outcomes
for traditional and multinomial cutscores. Ta-
ble 4 shows the risk-ratios for true-positive,
true-negative and inconclusive results.

Risk ratios are informative as to the practical
likelihood of differences in observed outcomes
as they may be experienced for an individu-
al or groups of cases. Risk ratios in Table 4
suggest that the use of multinomial cutscores
with ESS scores may reduce the likelihood or
occurrence of inconclusive outcomes to 34%
of what would be expected from traditional
cutscores. For three-position scores the risk
of inconclusive outcomes may be reduced to
approximately 20% of the risk of inconclusive
results using traditional cutscores. Howev-
er, actual rates in field practice the observed

Table 4. Risk-ratios for TP, TN, and inconclusive results for traditional and multinomial cutscore

ESS scores Three-position scores
Inconclusive .34 (2.9) .19 (5.3)
Sensitivity (TP) 1.38 1.38
Specificity (TN) 1.64 2.21

difference may not achieve these estimated
differences because field practitioners may al-
ready engage in a variety of activities to resolve
or reduce the occurrence of inconclusive re-
sults. Information shown in Table 4 indicates
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that guilty persons are 1.4 times more likely
to be detected using multinomial cutscores,
while innocent persons may be 1.6 times more
likely to be classified as truthful.
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Conclusion

This project, concerned with the study of
grand total cutscores, involved the use of the
GTR with ESS and three-position scores using
both traditional and multinomial cutscores.
The GTR, although perhaps the simplest of all
PDD decision rules, has been shown to pro-
vide the highest rates of overall classification
accuracy among the variety of PDD decision
rules. Accuracy effects were compared for
ESS and three-position scores of event-spe-
cific polygraph exams using traditional nu-
merical cutscores and multinomial cutscores
for grand total scores. Although skill devel-
opment at manual scoring with the ESS — as
with PDD testing in general — is most effec-
tively acquired as a function of both didactic
or academic knowledge of standardized pro-
cedures and practical supervision and guid-
ance under other experienced professionals,
the basic concepts of the ESS are simple and
highly structured, leading to the potential for
an automated process that closely approxi-
mates the activities of human experts. During
this project, to ensure that observed variance
can be attributed to differences in numerical
cutscores, and not due to expected variation
within the inter-rater reliability limits of man-
ual scoring methods, ESS and three-position
scores and results were obtained via computer
algorithm, including feature extraction, selec-
tion of RQ and CQ analysis spots, numerical
transformation, data reduction application of
the GTR with both multinomial and traditional
cutscores.

Data for two different archival samples of con-
firmed FZCT field exams were used. These
archival samples have been characterized by
human scorers as challenging, though previ-
ously reported effect sizes for both human and
computer algorithms is consistent with those
shown herein. Results are shown separately
in table form for each of the samples. Data for
two samples were then combined for statisti-
cal analysis of potential differences in effect
sizes for ESS and three-position scores. For
the combined samples, significant differences
were observed for test sensitivity to deception,
test specificity to truth-telling, and the propor-
tion of inconclusive results. Use of multinomi-
al cutscores reduced the occurrence of incon-
clusive results and increased both sensitivity
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to deception and specificity to truth-telling.
Use of archival data permits the direct com-
parison of observed effect sizes with previously
reported effect using the same data with oth-
er scoring methods for which field examiners
have intuitive knowledge and experience of
their effectiveness.

Of particular interest in this project is that
none of the deceptive or truthful classifica-
tions were reversed as a result of the selec-
tion of traditional or multinomial cutscores for
grand total cutscores with either the ESS or
three-position scores. Another interesting ob-
servation in this project is that accuracy ef-
fects for correct classifications, including PPV,
NPV, and the proportion of correct classifica-
tions excluding inconclusive results within the
guilty and innocent, along with the unweight-
ed accuracy excluding inconclusive results
were substantially similar for both traditional
and multinomial cutscore with both ESS and
three-position numerical scores. However, use
of multinomial cutscores increased sensitivity
to deception by factor of 1.4 for both ESS and
three-position scores, while increasing speci-
ficity to truth-telling by a factor of 1.6 for ESS
scores and by a factor of 2.2 for three-position
scores. Multinomial cutscores reduced the oc-
currence of inconclusive results by a factor of
2.9 for ESS scores, and by a factor of 5.3 for
three-position scores. Use of multinomial cut-
scores and grand total scores with the FZCT
format, a three-question single issue format,
achieves the level of accuracy requires by the
American Polygraph Association Standards of
Practice for evidentiary exams — those exams
conducted with an expectation that the results
and information may be used as information
in a legal proceeding (American Polygraph As-
sociation, 2018)) — for both ESS and three-po-
sition scores.

Potential practical implications of these re-
sults include the possibility of increasing the
effectiveness of field polygraphs in correctly
classifying both deception and truth-telling.
Another practical implication is that it is a
reasonable consideration, in terms of classi-
fication accuracy, for polygraph programs to
make use of traditional numerical cutscores
with ESS scores if the prospect of changing
both score type (ESS or three-position scores)
and cutscores presents an uncomfortable
number of degrees of freedom for policy mak-
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ers. Indeed, there is practical and scientific
wisdom in changing one variable at a time
while observing and gaining experience with
different methods. More broadly, these results
support that it is a reasonable consideration
for field examiners and/or policy makers to
consider using only the grand total score for
the FZCT format — a finding for which there is
no basis of information or theoretical rationale
to suggest that it can be generalized to all sin-
gle issue polygraph formats.

Like all projects, this one is subject to some
limitations. One difference between the proce-
dures used during this project and those used
by field practitioners when manual scoring
is that this project is limited to the analysis
of grand total scores. Human experts in field
practice may rely on different decision rules
depending on agency policy. Although not
all agencies will choose to make use of only
the grand total score, grand total scores have
been shown consistently in published studies
to provide the highest overall rates of classifi-
cation accuracy. Use of grand total scores in
this manner is thought to provide the greatest
insight into the influence of grand total cut-
scores on overall test accuracy regardless of
the decision rules used in field practice.

This project did not attempt to study effects
with decision rules other than the GTR. Study
of interaction effects involving both numerical
cutscores and decision rules that may make
use of both grand total and subtotal scores
would require a multivariate analysis that is
beyond the scope of this analysis — intended
to be a simple an intuitive descriptive survey
of accuracy effects with grand total scores. A
more comprehensive project would have in-
vestigated both the type of cutscores and the
decision rule. However, such a project would
expand the complexity of the analysis consid-
erably, along with a corresponding increase in
the complexity of the analysis and information
from the analysis. Limiting this project to 2
dimensions — scoring type and cutscore type
—was thought to provide information of poten-
tially practical use while also addressing the
analytic questions in some degree of depth.

There is reason to expect that some interac-
tion exists between the decision rule and the
selection of numerical cutscores. One obvious
implication of these analytic results is that
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traditional numerical cutscores for grand to-
tal scores, though not inaccurate, appear to
be inefficient. A consequence of this is that
polygraph field practitioners, in addition to
polygraph trainers, quality control person-
nel and program managers, may have come
to rely more heavily than is ideal on subtotal
score to remediate the inefficiency. A conse-
quence of over-reliance on subtotal scores to
remediate inefficiency is that use of subtotal
scores will introduce statistical multiplicity ef-
fects than complicate the test accuracy effects
— most often in ways that can make the test
appear biased against innocent persons. Se-
lection of a more optimal grand total cutscore
may increase test accuracy with both guilty
and innocent persons while potentially reliev-
ing some of the burden of multiplicity effects.
The interaction of decision rules and numer-
ical cutscores should be the topic of further
analysis and study.

Another limitation of this study involves the
three-position scores. In this project three po-
sition scores were achieved by flattening of
EDA scores of the ESS scores. It is unknown
to what degree these three-position scores
may differ from those achieved in field prac-
tice contexts where examiners might make
use of secondary response features and other
semi-subjective practices that are not includ-
ed in the ESS and which cannot be subject to
automation. In principle, three position scores
can be extracted using the exact same auto-
mated procedure as for ESS scores. Three-po-
sition scores can also be achieved using the
more complex system of primary and second-
ary features that was developed for seven-posi-
tion scores — and which is less easily amenable
to automation. Regardless of this limitation, it
is the view of the author that the three-posi-
tion values herein are sufficiently representa-
tive for these results to provide some poten-
tially useful information.

A final limitation is that inconclusive rates ob-
served in this study, like all scientific studies,
may be greater than those observed in field
practice. This to be expected. Polygraph field
examiners, and polygraph programs, are re-
garded as acting reasonable if they engage in
efforts to resolve inconclusive results at the
level of each individual case. In research of
this type such efforts would amount to manip-
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ulating the research outcome. For this reason,
no effort is made, in projects of this type, to
resolve or reduce the occurrence of inconclu-
sive results at the individual case level. Differ-
ences in inconclusive results are a reflection
of the analysis method, and will necessarily be
greater than inconclusive rates in field prac-
tice.

With consideration for the acknowledged lim-
itations, accuracy effects observed in this anal-
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ysis place the FZCT in the range required by
the APA standards of practice for evidentiary
examinations (APA, 2018). Evidentiary exams
are those for which the test is conducted with
the intention of introducing the test result as
a basis of information in a legal proceeding.
Accuracy rates observed herein equal or ex-
ceed those of other evidentiary PDD formats.
Continued interest and continued research is
recommended for ESS scores, the GTR and
the use of multinomial cutscores.



Nelson
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