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ESS-M

 ESS-Multinomial

 Calculated under the analytic theory of the polygraph test
 Greater changes in physiological activity are loaded at different types of test 

stimuli as a function of deception and truth-telling in response to relevant 
target stimuli

 Calculation of the multinomial reference model is possible because the 
theory can be expressed mathematically under the null-hypothesis
 Null-hypothesis: no differences in the loading of + 0 – scores for different types 

of test stimuli
 Distribution can be characterized as a random variable for which the  distribution is 

multinomial 
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Theory of the Polygraph Test
● Greater changes in physiological activity are loaded at different types 

of test stimuli as a function of deception and truth-telling in response to 
relevant target stimuli
– Can be expressed mathematically

● Under the null hypothesis
– Distribution of polygraph scores is a multinomial distribution  

● Scores (+ 0 -)
● Sensors (respiration, electrodermal, cardio, vasomotor)
● RQs (how many?)
● Charts (how many?)

– Range of scores (what are all the different possible scores?)
– How many permutations of the score sheet?
– How many ways are there to achieve each possible score?

● Statistical likelihood
● Bayesian analysis
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ESS-M Questions

 What is it?
 Where did it come from?
 Is it valid? 
 Why do we need it?
 What is the same?
 What is different?
 What is new?
 How do we use it?
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ESS-M – What is it?
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ESS-M – What is it?

 A very important update to the ESS

 Several improvements and advancements
 Multinomial distribution calculated under the basic theory of the test
 Bayesian analysis
 More intuitive and direct statistical estimate of the effect size of 

practical interest
 Statistical decision model includes the vasomotor sensor
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  Where did it come from?
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  Where did it come from?
 ESS / ESS-M is a body of scientific knowledge and procedure that 

belongs to the polygraph profession
 Everyone
 Nobody

 Open source / community source
 Free 

 Free beer (no cost)
 Free speech (knowledge and permission)
 Freedom (do what you want with it… use it / don’t use it)

 Different implementations for different polygraph instruments
 Same statistical decision model 
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  Who developed it?
 Summers
 Reid
 Kubis
 Backster
 Dept of Defense
 Barland
 Krapohl & McManus
 Senter & Dollins
 Nelson, Kraphl & Handler
 Nelson, Krapohl, Handler, Blalock, Cushman, Oelrich, Shaw, Gougler, O´Burke, 
 Kircher, Raskin, 
 Raskin, Honts & Kircher
 Nelson/Lafayette
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  Is it valid?
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  Is it valid?

 At the most basic level, ESS-M is just ESS with different cut-scores
 Cut-scores are not valid nor invalid
 Cut-scores are either optimal or sub-optimal for defined goals
 Different cut-scores may influence the test precision and error rates

 Use of the Multinomial reference model and Bayesian analysis is just an 
improved way to determine the cut-scores and test statistics 

 Court acceptance

 Academic and scientific acceptance

 Practical use of ESS in polygraph training

 Practical use of the ESS in polygraph programs
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  Is it valid?

 ESS Data base of over 25 different studies
 Over 30 different samples
 Over 1000 different exams
 Over 150 examiners
 Over 6000 scored results
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Is it valid?

 Validation experiments have shown ESS-M accuracy to equal 
or exceed that of the original ESS
 Archival data

 Allows direct comparison of ESS-M with ESS and other scoring systems
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Why do we need it?
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Why do we need it? (1)

 Add the vasomotor sensor to the ESS
 Previous ESS (and all commercially available computer scoring algorithms) 

have not used the vasomotor sensor
 Normative data for original ESS and other scoring algorithms does not include 

the vasomotor sensor
 Un-answered questions about differences in cut-scores and test accuracy and 

error rates with and without the vasomotor sensor
 Estimations of test accuracy and error rates are previously unquantified when 

using the vasomotor sensor
 AAFS now says that forensic analysts should not give unquantified categorical 

conclusions
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Why do we need it? (2)

 Provides a mathematical theoretical reference distribution for the CQT 
 A good theoretical model should give results that are also observable with 

empirical data

 The CQT has been criticized by scientists for lacking a basic theory
 A basic theory is not expected to describe exactly what is happening 

psychologically or physiologically
 A theoretical reference distribution is an expression of the theory of the test, 

subject to mathematical and logical proof (if the theory is valid)
 Still subject to empirical validation
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Why do we need it? (3)

 Bayesian analytics
 Instead of frequentist analytics

 Frequentist analysis provides a calculation of measurement error
 Measurement error when fitting a test score to a model distribution for deceptive scores

 Probability of error
 Not an measurement of truth or deception

 Measurement error when fitting a test score to a model or distribution for truthful scores
 Probability of error
 Not a measurement of truth or deception

 Original ESS used a p-value (measurement error) as an estimate of decision error

 Bayesian analysis provides a more direct calculation of the effect-size of interest
 Deception
 Truth-telling

 Bayesian analysis uses credible intervals as a measurement of confidence level
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Why do we need it? (4)

 Results using Odds are a more intuitive and direct measurement for effect-size 
 Odds are more intuitive and more easily understood by many people

 P-value abuse and controversy in science
 P-values are often misunderstood
 P-values are often abused

 Many people overestimate the strength of a conclusion when discussing p-values

 Probabilities are also difficult for many people to understand
 Probability of error
 Requires a lot of abstraction and mental effort to map a probability to an imaginary space between 0 

and 1

 American Statistical Association (2016) provided important guidance on p-values
 P-values are still difficult to understand
 P-values are still easy to abuse
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ASA (2016) P-Values (1)

 P-values can indicate how incompatible the data are with a specified statistical model
 P refers to incompatibility 

 P-values do not measure the probability that the studied hypothesis is true, or the 
probability that the data were produced by random chance alone
 P commonly refers to the null-hypothesis
 Null-hypothesis is commonly “no difference”

 If there is no real difference then any observed difference is due to uncontrolled factors
 Uncontrolled factors can be characterized as random variables

 Scientific conclusions and business or policy decisions should not be based only on 
whether a p-value passes a specific threshold
 Also need info about the incidence rate,
 And economic values
 Economic costs
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ASA (2016) P-Values (2)

 Proper inference requires full reporting and transparency
 Input parameters
 Results
 Other attempts to analyze the data 

 A p-value, or statistical significance, does not measure the size of an effect or the 
importance of a result
 P refers only to model incompatibility
 Different than the likelihood of a correct decision or good decision

 By itself, a p-value does not provide a good measure of evidence regarding a model or 
hypothesis
 By itself a p-value expressed only the degree of incompatibility with a model or hypothesis
 Can be combined (mathematically) with other information

 Incidence rate
 Utility function

 Practical, mundane and economic value vs practical, mundane, and economic costs
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  Why do we need it?
 Answer scientific question about a test result and the polygraph in general and 

 ESS can quantify degree of uncertainty
 P-values are not a direct estimate of the effect size of practical interest (deception and truth)

 ESS-M provides a more intuitive and direct estimate of deception and truth
 Odds of truth / odds of deception

 Known accuracy and error rates 
 Available in the published studies

 Reliable 
 Reproducible
 Coherent

 Learnable and understandable
 Polygraph field practitioners
 Scientists
 Courts and legislators
 Media and community

 Defensible scientific premise
 Mathematical and logical expression of the theory of the test
 Does not depend on unprovable assumptions re linearity of physiological response
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What is the same?
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What is the same?

 Nearly all manual scoring procedures are the same for ESS-M 
as for the original ESS
 Scoring features
 Numerical transformations
 Decision rules
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How to use the ESS-M?
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How to use the ESS-M?

 Four parts of a scoring system

 How to use the multinomial tables

 Understanding the ESS-M Bayesian Classifier

 Four steps to using a statistical reference and decision model
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  Four Parts to Any Test Data Analysis Method

 Features
 Kircher features - primary features only

 Numerical transformations (data reduction)
 Weighted 3-position integer scores (double the EDA scores)
 Sub-total scores
 Grand-total score

 Likelihood function
 Empirical norms
 Theoretical distribution
 Other likelihood function

 Decision rules
 Event specific diagnostic exams
 Multi-issue screening exams
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Feature Extraction

 Kircher features
 EDA amplitude
 Cardio amplitude
 Respiratory suppression
 Vasomotor constriction



Raymond Nelson (2018). Do not reproduce without permission.

28

Numerical Transformations

 3 position scores (Dept of Defense)
 Weighted EDA (Krapohl  & McManus)

 Respiration (+/- 1)
 EDA (+/- 2)
 Cardio (+/- 1)
 Vasomotor (+/- 1)

 Sub-total scores for each RQ
 Grand-total score for all RQs
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Why double the EDA scores?
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  Why double the EDA scores?

 A number of publications have described the importance and strengths of 
the electrodermal signal in the structural model for polygraph data analysis
 Capps & Ansley, (1992)
 Harris & Olsen (1994) 
 Kircher & Raskin (1988, 2002)
 Raskin, Kircher, Honts, & Horowitz (1988)
 Kircher, Krisjianson, Gardner & Webb (2005)
 Harris, Horner & McQuarrie (2000)
 Krapohl & McManus (1999)
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Kircher 1981

 Standardized discriminate coefficients
 Electrodermal = .65
 Cardio = .37
 Respiration = .28

 Normalized values
 Electrodermal = .5
 Cardio = .28
 Respiration = .22
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Kircher 1983

 Normalized discriminate coefficients
 Electrodermal = .46
 Cardio = .12
 Finger pulse amplitude = .17
 Respiration = .25
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Kircher and Raskin 1988

 Discriminate analysis - normalized weighting coefficients
 Electrodermal amplitude = .61
 Electrodermal recovery = .11
 Electrodermal burst frequency = -.01
 Blood pressure = .11
 Respiration = .17
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Raskin, Kircher, Honts & Horowitz 1988

 Point-biserial coefficients (rbp
2) non-normalized

 Electrodermal = .53
 Blood pressure = .48
 Respiration = .15

 Normalized
 EDA = .46
 Cardio = .41
 Respiratio = .13
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Ansley and Krapohl 1999

 Survey of numerical scores (normalized)
 Pneumograph = .19
 Cardio = .26
 Electrodermal = .55
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OSS-3 2008

 Discriminate analysis (normalized)
 Electrodermal = .53
 Cardio = .28
 Respiration = .19
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Lafayette – 2013; 2018

 Point-biserial coefficients (rbp
2) (non-normalized)

 Electrodermal = .49
 Cardio = .28
 Respiration = .22



Raymond Nelson (2018). Do not reproduce without permission.

38

Nelson (2014) Genetic Algorithm 

 Genetic algorithm (artificial intelligence / machine learning)
 Computational, not statistical
 Evolutionary rules

 Numerous random solutions (hypothesis)
 Survival of fittest (50% mortality)
 Reproduction of new solutions from survivors
 Random mutation (5% mutation rate)

 30,000 Generations



Raymond Nelson (2018). Do not reproduce without permission.

39

Genetic Algorithm Results 

 Normalized weighting coefficients
 Electrodermal = .54
 Cardio = .34
 Respiration = .12
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Why double the EDA scores?

 A lot of evidence suggests the EDA drives approximately ½ of 
the total score and result

 Increases accuracy

 Decreases inconclusive results



Raymond Nelson (2018). Do not reproduce without permission.

41

Why double the EDA scores?

 Weighting the EDA score is a simple and convenient 
approximation of an optimal statistical/structural model

 Computer scoring algorithms have routinely weighted the EDA 
near 50% and have already begun to outperform human expert 
scorers
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  Are simple 3 position methods better? 

 This suggestion will require a lot of evidence to out-weigh the 
evidence for weighted models

 Naive-Bayes algorithms
 Naive assumptions

 Different sources of data are independent
 Different sources of data contribute equally

 AI/ML tools allow the machine to learn the best structural function
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  Does ESS overweight the EDA?

 No

 Evidence does not support the EDA as overweighted

 Acceptance of an overweighting hypothesis will require a lot of 
evidence contrary to robust and recurrent published findings

 Accepting the overweighting argument will require
 Evidence that an unweighted model is more effective

 TP TN
 FN FP
 INC
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  Are ESS scores too simple

 Simpler models have lower risk
 Lower risk for fitting and replication failure for effective models
 Fewer degrees of freedom

 Reduced subjectivity
 Reduced reliance on secondary response features with weaker reliability

 Occam´s razor has been proved mathematically
 Simpler skill sets are more reliable
 Simpler skill sets are less perishable
 Simple models have lower potential for error 

 are therefore “less wrong” if they perform similarly to a more complex model
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  Are more complex 7 position methods better?

 Complex transformations will have many more degrees of freedom
 Differences between scores of -3 -2 -2 - 1 2 3 vs differences between – 0 +
 Greater subjectivity 
 Greater reliance on secondary response features with greater and instability / unreliability

 Complex models generally have greater risk 
 Risk for problematic/erroneous assumptions 
 Risk for reliance on false hypothesis
 Risk for overfitting 
 Risk for replication failure

 Complex models are more difficult to learn
 Complex skill sets are more easily perishable
 Complex models have more potential error
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ESS/ESS-M Scores

 Weighted 3-position scores
 Are anchored by authoritative publications from the U.S. Department of Defense on 

the use of 3-position scores
 Rely on scientific knowledge from both the U.S government, academic researchers, 

and industry researchers on the optimal statistical and structural combination of data 
from different sensors

 Approximate an optimal statistical/structural function by weighting the EDA 
scores
 Reduced inconclusive results
 Increased test sensitivity and specificity
 Reduced testing errors
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EDA Weighting is an empirical question…. 

 Does it actually (empirically) work better to double the EDA 
scores?

 N=100 confirmed Federal ZCT exams from the 2002 DoD 
archive, used by Krapohl (2005)
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Un-weighted 3-Position Multinomial Results
 N=100 Federal ZCT confirmed field cases used by Krapohl (2005)
 Multinomial cutscores [+2 / -2 (-6)]
 Two-stage rules (Senter rules)
 Guilty cases

 DI = 44 (.88) {.78, .96}
 NDI = 2 (.04) 
 INC = 4 (.08)
 Correct w/o inc = .96 

 Innocent cases
 DI = 2 (.04)
 NDI = 38 (.76) {.63, .87}
 INC = 10 (.20)
 Correct w/o inc = .95

 All cases
 Correct = 82 (.82)
 Error = 4 (.04)
 INC = 14 (.14) {.08, .21}
 Correct without inconclusives = .95
 Unweighted = .955
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Weighted ESS Multinomial Results
 N=100 Federal ZCT confirmed field cases used by Krapohl (2005)
 Multinomial cutscores [+3 / -3 (-7)]
 Two-stage rules (Senter rules)
 Guilty cases

 DI = 46 (.92)  {.84, .98}
 NDI = 2 (.04)
 INC = 2 (.04)
 Correct w/o inc = .96

 Innocent cases
 DI = 4 (.08)
 NDI = 40 (.80)  {.68, .90}
 INC = 6 (.12)
 Correct w/o inc = .91

 All cases
 Correct = 86 (.86)
 Error = 6 (.06)
 INC = 8 (.08)  {.03, .14}
 Correct without inconclusives = .93
 Unweighted = .94



Raymond Nelson (2018). Do not reproduce without permission.

50

What’s the effect of doubling the EDA Scores?

 Weighting the EDA scores reduced the inconclusive rate by 
over ~ 30 to 40%
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Decision Rules
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Decision Rules (1)

 Grand-total rule (GTR)
 Most accurate
 Simplest

 Sub-total score rules (SSR)
 For multi-issue screening
 Use statistical correction for multiplicity

 To reduce INC and FP errors with innocent persons

 Two-stage rules (TSR; Senter rules)
 Optimal rules for event-specific exams

 Accuracy similar to the grand-total rule
 Potentially reduced inconclusive results
 Potentially increased test sensitivity
 Use statistical correction for multiplicity
 Not expected harm to innocent persons when a statistical correction is used
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Decision Rules (2)

 Federal ZCT Rule (FZR)
 Traditional decision rule for ZCT and You-Phase (Bi-Zone)
 High sensitivity
 Low FN rate
 Weak specificity 
 High INC rate for innocent persons

 TES / DLST Rule (TES)
 Procedurally similar to the FZR
 Most examiners use SSR for DLST exams

 Utah 4 Question Rule (UT4)
 Uses grand total and subtotals
 Evaluates the uniformity of the subtotal signs
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What is different about the ESS-M?
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What is different about ESS-M?
 Includes the vasomotor sensor

 Also without the vasomotor sensor

 Probability results using Odds instead of p-values
 More intuitive
 Less confusion and misunderstanding
 Less abuse and misuse of the probabilistic meaning
 Less prone to overestimation

 Different cut-scores
 Multinomial distribution for the CQT

 Calculated from facts and information from the theory of the polygraph
 Subject to mathematical proof

 Bayesian analytics
 Accounts for prior probability in a way that frequentist analysis cannot
 Bayesian probability results are a more intuitive estimate of effect size than frequentist p-values
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Vasomotor Sensor (PLE, P02, PPG)

 Not previously included in the statistical reference and decision models for 
commercially available polygraph scoring algorithms

 Traditional manual cut-scores were developed without the vasomotor sensor
 Previously unknown statistical model when using the vasomotor with manual 

scores
 Vasomotor not included in commercially available computer scoring algorithms

 ESS-M reference and decision models are fully calculated both with and 
without the vasomotor sensor

 ESS-M validation studies with archival data support it’s validity both with and 
without the vasomotor sensor
 Archival data allows direct comparison off ESS-M and other methods



Raymond Nelson (2018). Do not reproduce without permission.

Probabilities and Odds

 Probabilities
 Requires abstract/imaginary (decimal) probability space between 0 and 1
 Map the decimal proportion to the probability space
 Superimpose the probability space (0 to 1) and decimal/proportion statistic onto a real-life 

situation

 Odds  
 Uses integers instead of decimals
 Some-likelihood-of-occurrence vs Other-likelihood

 Something to 1
 1 in Something

 Odds are a direct description of the effect size of interest
 Who will win the Word Series?

 Odds are intuitive description of the probability space for some persons
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Prob = .67

Odds = P / (1 – P)

Odds = .67 / (1 – .67)
     = .67 / .33

          = 2 
          = 2 to 1
          = 1 in 3 chances

How to get odds from Probabilities
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Odds  = 2 (2 to 1)

Probability = Odds / (1 + Odds)

Probability  = 2 / (1 + 2)
                  = 2 / 3
                  = .67

How to get probabilities from odds
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Why do we need odds?

 P-values are confusing to people
 What is a p-value?
 The probability of obtaining a value under a specified model

 Null hypothesis vs alternative

 P-values are vulnerable to misuse and overestimation

 Odds are simpler and more intuitive for more people
 Cannot calculate odds of deception or truth from ESS p-values
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ESS-M Cutscores

 Single issue exams

 Multiple issue exams
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What’s new for the ESS-M?
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What’s new?

 Multinomial reference distribution

 Bayesian analytics
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ESS-Multinomial Reference Tables

 Determine the cut-scores
 Deception
 Truth-telling

 Calculate the posterior odds
 Deception
 Truth-telling



Raymond Nelson (2018). Do not reproduce without permission.

Multinomial Reference Distribution (Table)

 Mathematical expression of the basic theory of the polygraph test 
 Likelihood function

 Device used to obtain a statistical value for a test score
 Device used to calculate cut-scores necessary to achieve  a required level of 

statistical significance

 Generalizable to any group or population for which the basic theory is valid
 Generalizable for any array of valid sensors

 Valid sensors discriminate deception and truth at significant levels
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ESS-M Likelihood Function (3RQs)
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ESS-Multinomial Reference Tables

 Calculated under the analytic theory of the polygraph test

 Greater changes in physiological activity are loaded at different 
types of test stimuli as a function of deception and truth-telling 
in response to relevant target stimuli
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What is multinomial?
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What is multinomial?

 Multinomial distribution
 Refers to a distribution of possible values

 Example: +1 0 -1

 Values occur with some expected frequency or probability

 Polygraph scores are multinomial

 Given the theory of the polygraph, what is the expected frequency of +1 0 -1 values?
 Answer: We don’t know

 However, the null-hypothesis can be known
 (+1 0 -1 scores occur with equal frequency or probability) 
 Expected frequency is [.333, .333, .333] for [+1 0 -1] scores
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Multinomial Distribution for Sensor Scores

 Example: 3 RQs  x   3 Charts  =  9 iterations of the test stimuli
 Max score = +9

 Only 1 way to get +9

 Min scores = -9
 Only 1 way to get -9

 Most common score = 0 under the null hypothesis
 3139 ways to get a sensor score of 0

 19 possible sensor scores, ranging from from +9 to-9 (including 0)  
 3^9 = 19683 different combinations of scores

 3 possible values ^ 9 iterations = 19683

 4RQs  x  5 Charts  =  20 iterations for each sensor score
 3^20 = >3.4 Billion score-sheet permutations
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What is combinatorics?

 Combinatorics is an area of mathematics concerned with 
counting things

 Can be used to count all the different possibilities for the 
multinomial distribution
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Multinomial Sensor Distribution 
(3RQs x 3Charts)
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Multinomial Sensor Distribution 
(3RQs x 3Charts)
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Multinomial Distribution of Total Scores 
(all sensors)

 3RQs x 3Charts x 3Sensors = 27
 Double the EDA scores
 27 + 9 = 36
 Total scores range from +36 to -36 (including 0)

 73 different possible scores

 Only 1 way to get +36
 Only 1 way to get -36
 181 ways to get a score of 0
 19683 permutations
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Score sheet: 3 RQs * 3 Charts * 3 Sensors 
Chart 1 R1 R2 R3

Respiration

Electrodermal

Cardio

Chart 2 R1 R2 R3

Respiration

Electrodermal

Cardio

Chart 3 R1 R2 R3

Respiration

Electrodermal

Cardio
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Combinatorics: How Many Possibilities

 3 RQs * 3 Charts * 3 Sensors = 27 Scores

 3 possible scores for each of the 27 Scores (+ 0 -)

 27^3 = 19683

 Combinatorics allows us to calculate (count) the number of 
possible ways to achieve possible score



Raymond Nelson (2018). Do not reproduce without permission.

77

Multinomial ESS Distribution
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ESS-Multinomial Likelihood Function
(3RQs x 3Charts x 3 Sensors)
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ESS-M Multinomial Reference Tables

 Calculated for
 Number of RQs
 3 to 5 iterations
 Combined sensor scores

 Respiration, EDA, Cardio
 Respiration, EDA, Cardio, Vasomotor

 Prior probability
 Prior information is insufficient to make a classification
 Prior = 1 to 1 is optimal for most purposes

 Alpha
 a = .05 for most purposes
 Alpha is used to calculate the 1 – a/2 credible interval

 1 – a/2 CI probability that the posterior  probability is different (better) than the prior
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ESS-M Multinomial Reference Tables

 Calculated for up to 5 charts
 Event-specific (diagnostic) exams 

 2RQs
 3RQs
 4RQs

 Multiple-issue (screening) exams
 2RQs
 3RQs
 4RQs
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ESS-Multinomial Likelihood Function
(3RQs x 3Charts x 3 Sensors)
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ESS-M Reference Tables
 Score

 Grand total score for all iterations of all RQs

 Ways
 Number of ways (scoresheet permutations) to achieve each score

 PDF (probability density function) 
 Proportion of ways to achieve each score / all possible scoresheet permutations

 CDF (cumulative distribution function)
 Running sum of the probabiliti (each value added to the previous sum)

 contCorCDF (continuity corrected CDF)
 Continuity corrected values will always exceed (never equal) the actual CDF
 Continuity correct for <.5 and >.5
 No continuity correction for the prior (.5)

 Odds (posterior odds)
 Odds of deception or truth are calculated from the contCorCDF column  (p / (1 – p)

 OddsLL05 
 Lower limit of the 1 – a/2 credible interval for the posterior odds of deception or truth-telling
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How to use the ESS-M Tables
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How to use the ESS-M Tables

 Alpha determines the upper-limit and lower-limit of the credible interval
 Only the lower-limit offers any interpretable meaning (worst-case scenario)
 Upper-limit (happy-number) of the credible interval is meaningless/un-interpretable

 Cut-scores are determined by the required alpha level
 Alpha = .05 for most purposes

 Cut-scores are also determined by the prior odds of deception
 Prior information is insufficient to conclude deception or truth-telling
 Prior = 1 to 1 is the optimal prior for most circumstances
 Published tables are available for the equal prior

 Cut-scores tell us whether or not a result is statistically significant
 Deception or truth-telling

 Cutscores are determined by the lower-limit of the posterior odds
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More on ESS-M Cut-scores

 Cut-scores tell us whether or not a result is statistically significant
 Deception or truth-telling

 Cut-scores are determined by the prior odds of deception
 Prior information is insufficient to conclude deception or truth-telling
 Prior = 1 to 1 is the optimal prior for most circumstances
 Published tables are available for the equal prior

 Cut-scores are also determined by the required alpha level
 Alpha = .05 for most purposes

 Alpha determines the upper-limit and lower-limit of the credible interval
 Only the lower-limit offers any interpretable meaning (worst-case scenario)
 Upper-limit (happy-number) of the credible interval is meaningless/un-interpretable

 The lower-limit of the 1-a/2 credible interval determines the cutscore
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How to use the ESS-M Tables (1)

 To get the cut-scores
 Start with the oddsLL05 column
 Locate the rows with the smallest lower-limit odds that exceeds the 

prior odds
 Lower-limit odds for deceptive classification
 Lower-limit odds for truthful classification

 Use the corresponding rows in the score column to determine the 
cut-scores

 Cut-score for deception
 Cut-score for truth-telling
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ESS-M Likelihood Function – 3RQs
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Cut-scores: 3RQs

 Deceptive cut-score = -3
 Lower-limit of the 1 – a/2 credible interval = 1.15 to 1

 Truthful cut-score = +3
 Lower-limit of the 1 – a/2 credible interval = 1.15 to 1
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ESS-M Likelihood Function – 3RQs
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How to use the ESS-M Tables (2)

 To get the posterior odds of deception or truth-telling
 Start with the score column
 Locate the table row that contains the test score
 Use the corresponding rows in the odds column to determine the 

posterior odds
 Odds of deception
 Odds of truth-telling
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ESS-M Likelihood Function – Subtotal Scores



Raymond Nelson (2018). Do not reproduce without permission.

ESS-M Likelihood Function – Subtotal Scores

 Odds
 OddsLL05

 Odds2RQ
 Odds2RQLL05

 Odds3RQ
 Odds3RQLL05

 Odds4RQ
 Odds4RQLL05
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ESS-M Likelihood Function – Subtotal Scores
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How to use the Multinomial Subtotal Tables (1)

 To get the cut-scores
 Determine the number of RQs
 Select from  odds2RQLL05, odds3RQLL05, or odds4RQLL05
 Locate the rows with the smallest lower-limit odds that exceeds the prior odds

 Lower-limit odds for deceptive classification
 Lower-limit odds for truthful classification

 Use the corresponding rows in the score column to determine the cut-scores
 Cut-score for deception
 Cut-score for truth-telling
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ESS-M Likelihood Function – Subtotal Scores
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When to use the statistical correction

 Event-specific (diagnostic) exams
 No statistical correction for grand total scores
 Use the statistical correction for deceptive subtotals with the TSR
 Truthful subtotal scores are not used with the TSR  

 Multiple-issue (screening) exams
 No statistical correction for deceptive subtotals

 Common in screening to avoid loss of test sensitivity

 Use statistical correction for truthful subtotals
 Reduces inconclusive results for innocent persons 
 Use of the lowest subtotal means that passing the test requires passing all RQs
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ESS-M Likelihood Function – Subtotal Scores
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Cut-scores: Sub-total Scores - Screening

 Deceptive cut-score = -3
 Lower-limit of the 1 – a/2 credible interval = 1.15 to 1

 Truthful cut-score 
 2RQs = +2

 Lower-limit of the 1 – a/2 credible interval = 1.47 to 1

 3RQs = +1 
 Lower-limit of the 1 – a/2 credible interval = 1.13 to 1

 4RQs = +1
 Lower-limit of the 1 – a/2 credible interval = 1.49 to 1
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Cut-scores: Sub-total Scores - Diagnostic

 Truthful cut-score is not used
 Subtotal scores are not used for truthful classifications of diagnostic exams

 Deceptive cut-scores 
 2RQs = -5

 Lower-limit of the 1 – a/2 credible interval = 1.02 to 1

 3RQs = -7
 Lower-limit of the 1 – a/2 credible interval = 1.02 to 1

 4RQs = -9
 Lower-limit of the 1 – a/2 credible interval = 1.05 to 1
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ESS-M Cutscores

 Single issue exams

 Multiple issue exams
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How to use the Multinomial Subtotal Tables (2)

 To get the posterior odds of deception or truth-telling
 Start with the score column
 Locate the table row that contains the test score
 Determine the number of RQs

 Use the corresponding rows in the odds2RQ, odds3RQ, or 
odds4RQ column to determine the posterior odds

 Odds of deception
 Odds of truth-telling
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Examples
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Example 1: 3 RQ Diagnostic Exam

R1 = -4
R2 = -5
R3 = -3
Grand total = -12
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ESS-M Likelihood Function – 3RQs
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Example 1: 3 RQ Diagnostic Exam

Grand total = -12
Posterior odds of deception = 15 to 1
Posterior probability = .94
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Example 2: 3 RQ Diagnostic Exam

R1 = +2
R2 = +2
R3 = +1
Grand total = +5
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ESS-M Likelihood Function – 3RQs
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Example 2: 3 RQ Diagnostic Exam

Grand total = +5
Posterior odds of deception = 2.8 to 1
Posterior probability = .74
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Example 3: Subtotal Scores (multi-issue)

Always use the lowest subtotal score
R1 = +2
R2 = +3
R3 = -4 ← lowest subtotal score
R4 = +1
No grand total score for the SSR
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ESS-M Likelihood Function – Subtotal Scores
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Example 3: Subtotal Score

Lowest subtotal score = -4
Posterior odds of deception = 4.2 to 1
Posterior probability = .81
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Example 4: Subtotal Scores (multi-issue)

Always use the lowest subtotal score
R1 = +1 ← lowest subtotal score
R2 = +2
R3 = +3
R4 = +4
No grand total score for the SSR
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ESS-M Likelihood Function – Subtotal Scores
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Example 4: Subtotal Score

Lowest subtotal score = +1
Posterior odds of deception = 1.5 to 1
Posterior probability = .60
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Bayesian Analysis
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Bayesian analytics?

 Provides a more intuitive statistical estimate of the effect size of practical 
interest
 Deception
 Truth-telling

 Bayesian posterior odds (posterior probabilities) are more intuitive and 
less vulnerable than frequentist p-values
 Less vulnerable to misunderstanding
 Less vulnerable to abuse
 Less vulnerable to overestimation
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What is wrong with P-values?

 What is a p-value?
 Probability of the data under a specified model

 “probability of error” is simplistic

 Probability of error requires calculation of the test statistic 
together with the prior probability
 Bayesian analysis



Raymond Nelson (2018). Do not reproduce without permission.

Example:

 Result: DI

 P = .032

 Indicates a likelihood of .032 that an innocent person would 
produce the observed test score

 Does not indicate a .968 likelihood of deception 

 The probability of misclassification will be determined by the prior 
(base-rate)
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ESS Table (2008)
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Bayesian Analytics

 Data

 Prior probability distribution

 Likelihood function
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Test Data Analysis
 Feature extraction

 Useful/diagnostic information in the recorded data

 Numerical transformation and data reduction
 Transform the test data into numerical data for analysis
 Reduce the numerical data

 Grand total
 Subtotals

 Likelihood function
 Normative reference tables (calculated empirically)

 Depend on representativeness of the sampling data
 May be different for different groups

 Multinomial reference tables (calculated mathematically under the basic theory of the test)
 Bayesian analysis

 Decision rules
 Parse the numerical and statistical test result into a more convenient categorical result
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Old-school (mid-century) Polygraph

 Polygraph testing was sometimes viewed not as a test but as a context to 
stage and augment an interrogation
 Test results were viewed as not useful (useless) without a confession
 Test results were viewed as not needed (useless) when a confession was 

obtained

 Manual numerical scoring
 Visual analytics without probabilistic analysis
 Old-school numerical scoring was a procedural classifier, not statistical classifier

 Polygraph results were not viewed probabilistically
 Polygraph testing was expected to be nearly infallible
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New-School (21st Century) Polygraph

 Public, media, courts and legislator are told that polygraph is a scientific test
 Not everyone believes it is a scientific test

 Physiological recording and data analysis
 Validated (objective) feature extraction
 Numerical transformation and data reduction
 Statistical reference models
 Decision rules make use of a statistical classifier

 Greater public, scientific, judicial, legislative, media and administrative awareness of  
practical and economic costs and values associated with statistical decision making 
(probabilistic decisions under uncertain conditions)
 TP TN value (utility)
 FP FN cost 
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Computerized Scoring Algorithms

 Probability Analysis (1988)
 PolyScore (1990s)
 OSS / OSS-2 (1999; 2002)
 OSS-3 (2008)
 ESS / ESS-M (2008; 2017)
 Other algorithms provided either

 Rank or probabilistic information without decision classifier
 Decision classifier without a known statistical model
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Short History of Polygraph Data Analysis

 Structured test formats (1930s)
 Use of comparative stimuli to improve analysis of RQ responses (1939 / 1947)
 Manual scoring protocols were first described in publication by Kubis (1962)
 Numerical scoring was introduced as a teaching tool in the 1960s

 Used less consistently through the 1960s and 1970s
 More consistent use of numerical scoring after the 1980s

 1980s researchers at U.S. DoD and Univ. of Utah
 1990s Computerized scoring algorithms
 Normative reference data published in 2008 / 2015
 Multinomial theoretical reference distributions published in 2017
 Increased use of Bayesian analysis (2018)
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Brief History of Polygraph Accuracy Research

Nelson & Handler (2013). Brief History of Polygraph Accuracy Research
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Polygraph Accuracy

 Polygraph accuracy research for many years was overestimating the level of precision of the test
 Improving the accuracy of the polygraph will be a matter of 

 Increasing reliability
 Structure
 Standardization
 Increase automation of some processes

 Reduced reliance on false hypothesis
 Increased reliance on valid theories
 Increase use of analytics to quantify and control test precision and error

 Any effort to improve or advance the polygraph will also require the calculation of realistic 
estimates of polygraph accuracy
 Accuracy estimates with research samples
 Accuracy estimates with individual cases
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Bayesian Analysis
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Bayesian Analytics

 Data

 Prior probability distribution

 Likelihood function
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Understanding the Bayesian ESS-M Classifier

 Multinomial likelihood function

 Bayesian analysis

 Credible interval

 Multiplicity correction for posterior odds
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ESS-M Classifier
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Prior Odds



Decision Rule
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Bayesian Analysis
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Multiplicity Correction for Odds
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Multinomial Likelihood Function
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Credible Interval
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ESS-M Classifier
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Bayesian ESS-M Classifier
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Bayesian ESS-M Classifier

 Combination of
 Prior odds

 Prior information, or
 Number of possibilities

 Posterior odds
 Likelihood Function

 Analytic theory of the polygraph test
 Decision rule
 Multiplicity correction

 Clopper-Pearson interval
 Posterior odds
 Alpha
 Number of RQs x repetitions

 Alpha level 
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Bayesian ESS-M Classifier

 A test result is statistically significant when the lower-limit of the 
credible interval has exceeded the prior probability
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NDI/NSR (Equal Prior)
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DI/SR (Equal Prior)
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INC/NO (Equal Prior)
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INC/NO (Equal Prior)
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NDI/NSR (Prior = 2 to 1)
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INC/NO (Prior = 2 to 1)



Raymond Nelson (2018). Do not reproduce without permission.

148

DI/SR (Prior = 2 to 1)
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INC/NO (Prior = 2 to 1)
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Keep it simple

● Use the ESS-Multinomial reference model to determine the 
cutscores

● Use the cutscores the same way as always
– A result is statistically significant if the score
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How to use the ESS-M Classifier (4 steps)
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How to use the ESS-M Classifier

 Locate the ESS-M reference table for the number of RQs in the 
test question format

 Determine the cut-score using the alpha boundaries and prior 
probability

 Calculate the posterior probability, and lower limit using the 
correct reference table for the number of RQs in the test format

 Interpret the result (translate the numerical and statistical result 
into usable human language)
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1. Locate the ESS-M Reference Table

 APA Website

 Nelson (2017) Multinomial reference distributions for the 
Empirical Scoring System. Polygraph and Forensic Credibility 
Assessment 46(2), 81-115.

 Nelson (2018). Guide for How to Use the ESS-Multinomial 
Reference Tables in Four Steps. APA Magazine, 51(2), 78-89.
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2. Determine the cut-score 
using the alpha level and prior probability

 Event-specific (diagnostic) exams
 Start with the oddsLL05 column
 Locate the rows with the smallest lower-limit odds that exceeds the prior odds

 Lower-limit odds for deceptive classification
 Lower-limit odds for truthful classification

 Use the corresponding rows in the score column to determine the cut-scores

 Multiple-issue (screening) exams
 Determine the number of RQs
 Select from  odds2RQLL05, odds3RQLL05, or odds4RQLL05
 Locate the rows with the smallest lower-limit odds that exceeds the prior odds

 Lower-limit odds for deceptive classification
 Lower-limit odds for truthful classification

 Use the corresponding rows in the score column to determine the cut-scores
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3. Calculate the posterior probability

 Event-specific (diagnostic) exams
 Start with the score column
 Locate the table row that contains the test score
 Use the corresponding rows in the odds column to determine the posterior odds

 Multiple-issue (screening exams)
 Start with the score column
 Locate the table row that contains the test score
 Determine the number of RQs

 Use the corresponding rows in the odds2RQ, odds3RQ, or odds4RQ column 
to determine the posterior odds



Raymond Nelson (2018). Do not reproduce without permission.

156

4. Interpret the result

 Translate the numerical and statistical test result into a categorical result
 Explain in human language what can be reasonably said about the 

probabilistic strength or meaning of the categorical result
 Explain the basis for the analysis that gave the result

 Type of analysis
 Analysis parameters
 Numerical and statistical result
 Scientific meaning of the statistical result
 Categorical result
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ESS-M Empirical Validity
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Nelson (2017) Table 1. Experiment 1 (N=100)
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Nelson (2017) Table 2. Experiment 2 (N=60)
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Nelson (2017) Table 3. Experiment 3 (N=40)
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Nelson (2017). Table 4. Experiment 3 (N=40)
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Nelson (2017) Table 5. Experiment 4 (N=100)
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Nelson (2017) Table 6. Experiment 4 (N=100)
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Nelson (2017) Table 7. Experiment 4 (N=100)
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Nelson (2017) Table 8. Experiment 4 (N=100)
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Nelson (2018) Table 1 (N=30)
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  Four Parts to Any Test Data Analysis Method

 Features
 Kircher features - primary features only

 Numerical transformations (data reduction)
 Weighted 3-position integer scores (double the EDA scores)
 Sub-total scores
 Grand-total score

 Likelihood function
 Empirical norms
 Theoretical distribution
 Other likelihood function

 Decision rules
 Event specific diagnostic exams
 Multi-issue screening exams
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Reporting ESS-M Results
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Reporting ESS-M Results (1)

 Method of analysis (ESS-M)
 Multinomial likelihood function

 Theory of the polygraph: greater changes in phys loaded at RQs or Cqs

 Bayesian analysis
 Prior
 Likelihood function
 Test Statistic
 Posterior likelihood of deception or truth-telling
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Reporting ESS-M Results (2)

 Analysis parameters
 Prior 
 Alpha
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Reporting ESS-M Results (3)

 Analytic result
 Decision rules

 GTR
 SSR
 TSR
 FZR
 TES
 UT4

 Score (cutscore)
 Odds of deception or truth-telling
 Lower limit of the 1 – a/2 credible interval
 Scientific meaning of the statistical result
 Categorical result
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Example Narrative

 Type of analysis

 Analysis parameters

 Analytic result
 Numerical and statistical result
 Scientific meaning of the statistical result
 Categorical result
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Example Narrative: Type of Analysis

 Recorded physiological data were evaluated with the Empirical Scoring System (ESS). 
The ESS is an evidence-based, standardized protocol for polygraph test data analysis 
using a Bayesian classifier with a multinomial reference distribution. Bayesian analysis 
treats the parameter of interest (i.e., deception or truth-telling) as a probability value for 
which the test/experimental data, together with the prior probability, are a basis of 
information to calculate a posterior probability. The multinomial reference distribution is 
calculated from the analytic theory of the polygraph test - that greater changes in 
physiological activity are loaded at different types of test stimuli as a function of deception 
or truth-telling in response to relevant target stimuli. The reference distribution for this 
exam describes the probabilities associated with the numerical scores for all possible 
combinations of all possible test scores for 3 to 5 presentations of 3 relevant questions 
using an array of 3 recording sensors: respiration, electrodermal and cardiovascular. 
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Example Narrative: Analysis Parameters

 These results were calculated using a prior probability of .5 for which the 
prior odds of deception were 1.0 to 1. A credible-interval (Bayesian 
confidence interval) was also calculated for the posterior odds of 
deception using the Clopper-Pearson method and a one-tailed alpha 
= .05. The credible-interval describes the variability of the analytic result 
by treating the test statistic (posterior odds) as a random variable for 
which the limits of the credible interval can be inferred statistically from 
the test data. A test result is statistically significant when the lower limit of 
the credible interval for the posterior odds has exceeded the greater 
value of the prior odds or the required minimum cut-ratio. 
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Example Narrative: Numerical and statistical 
result → Categorical result

 The categorical test result was parsed from the probabilistic result using two-stage 
decision rules. Two-stage rules are based on an assumption that the criterion 
variance of the test questions is non-independent, and make use of both the grand 
total and subtotal scores to achieve a categorical classification of the probabilistic 
test result. The grand total score of -18 equaled or exceeded the required 
numerical cutscore (-3). These data produced a Bayes factor of 101. The posterior 
odds of deception was 101 to 1, for which the posterior probability was .99. The 
lower limit of the 1-alpha Bayesian credible interval was 13.9 to 1, which exceeded 
the prior odds (1.0 to 1). This indicates a 95% likelihood that the posterior odds of 
deception exceed the prior odds. These analytic results support the conclusion that 
there were SIGNIFICANT REACTIONS INDICATIVE OF DECEPTION in the 
loading of recorded changes in physiological activity in response to the relevant 
test stimuli during this examination. 
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Recap
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Recap

 Four parts to any scoring system

 Multinomial reference tables

 Bayesian ESS-M Classifier

 Four steps to using the ESS-M Bayesian Classifier

 ESS-M criterion accuracy

 Reporting ESS-M results
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The Future
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The Future

 Improved recording sensors
 ESS-M Naive-Bayes model can be used with any array of valid recording 

sensors
 Greater use of AI/ML

 Management and adjustment of data
 Feature extraction
 Artifact rejection
 Selection of RQ/CQ analysis spots
 Assignment of ESS Scores
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Summary
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Summary

 ESS-Multinomial

 Calculated under the analytic theory of the polygraph test
 Greater changes in physiological activity are loaded at different types of test 

stimuli as a function of deception and truth-telling in response to relevant 
target stimuli

 Calculation of the multinomial reference model is possible because the 
theory can be expressed mathematically under the null-hypothesis
 Null-hypothesis: no differences in the loading of + 0 – scores for different types 

of test stimuli
 Distribution can be characterized as a random variable for which the  distribution is 

multinomial 
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Summary

 ESS-Multinomial
 Procedurally similar to the original ESS
 Includes the vasomotor sensor

 Also without the vasomotor sensor

 Slightly different cut-scores
 Multinomial reference model
 Some cut-scores are closer to zero

 Potential reduction of inconclusive results
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ESS-M Cutscores

 Single issue exams

 Multiple issue exams
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Summary

 Updated ESS (ESS-M)
 Procedurally similar to the original ESS
 Includes the vasomotor sensor

 Also without the vasomotor sensor

 Calculated from the theory of the polygraph
 Bayesian analytics
 Probabilistic information in the form of odds

 Instead of p-values

 ESS-M accuracy equals or exceeds the original ESS
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The End.

raymond.nelson@gmail.com  1-917-293-3208

mailto:raymond.nelson@gmail.com
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