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Bayes – Vocabulary Primer

● Bayesian inference
● Bayes Theorem
● Probability (Bayesian 

probability)
● Prior probability (prior 

probability distribution or
a priori)

● Likelihood function
● Posterior probability 

(a posteriori)

● Odds
● Bayes Factor
● Credible interval
● Naive-Bayes
● Objective Bayesian 

Analysis
● Subjective Bayesian 

Analysis
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Bayesian inference

● Statistical inference is the process of using sampling and data 
analysis to estimate a quantity of interest (Jeffreys, 1961; 
Savage, 1954) – referred to as an unknown parameter.

● Inference is necessary when the parameter of interest cannot be 
subject to deterministic observation or physical measurement. 

● Bayesian inference (Box & Tiao, 1973; Jaynes, 1986, 2003) 
involves the use of Bayes’ theorem to estimate the unknown 
parameter of interest. 
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Bayes Theorem

● A theorem is a mathematical expression that has been subjected 
to extensive mathematical proof. 

● Bayes’s theorem (Stigler, 1982; 1983) – also referred to as 
Bayes’ rule and Bayes’ law – is based on the work on Thomas 
Bayes (Bayes & Price, 1763) and Simon Pierre Laplace 
(1774/1986; 1812). 

● Bayes theorem involves the use of new information to improve 
the confidence or reduce the uncertainty about a conclusion 
associated with some prior existing information. 
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Probability (Bayesian probability)

● Bayesian probability refers to the degree of belief one may hold in some 
knowledge or conclusion under uncertain circumstances (de Finetti, 2017; 
Jaynes, 2003). 
– Can also  to an estimate of the reasonable expectation or likelihood for single 

trial (Cox, 1946). 
● Frequentist probability  refers to the frequency of observed events with an 

assumption that the circumstances can be subject to indefinite repetition. 
– Frequentist probabilities require phenomena that are both observable and 

repeatable.
– Bayesian probabilities can be used with a wider range of observable and un-

observable phenomena.
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Prior probability 
(prior probability distribution or a priori)

● The prior probability, sometimes referred as a priori or more simply prior, represents 
what is known about the likelihood of different possible outcomes before a scientific 
test or experiment is conducted (Berger, 1985; Rubin et al., 2003). 

● The prior probability distribution can be based on objective or empirical information 
such as a base-rate or incidence rate. 
– For example: if exactly four persons had access and opportunity to commit a crime then the 

prior probability is not less than .25, or 1 in 4 chances.  
● The optimal prior probability will often be 1 in 2 whenever little information is 

available – when there are 2 possible categorical conclusions. 
● Bayesian outcomes can also be evaluated for a range of different possible prior 

probabilities. 
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Likelihood function

● A likelihood function (Jaynes, 2003; Rohde, 2014) is a device for 
obtaining a statistical or likelihood value associated with some 
data. 

● A likelihood function can be thought of as a function of the input 
parameters that determine some probability distribution or 
statistical model. 
– Normal distribution

● Mean
● Standard deviation
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Posterior probability 
(a posteriori)

● The posterior probability tells us the revised probability or 
likelihood associated with a test result or conclusion after the 
available data are considered (Bernardo & Smith, 1994; Lee, 
2004). 

● The posterior is the combination, using Bayes’ theorem, of the 
prior, and likelihood function, and data from a test or 
experiment. 
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Odds
● Odds are a convenient and intuitive way of discussion probabilistic information in 

a manner that is easily expressed in prose (Fulton, et al., 2012; Gelman et al., 
2003). 
– For example: the odds obtaining a “head” when tossing a fair coin can be described as 1 

to 1 or 1 in 2. 
● We can calculate the odds for any probability or proportion

– Odds = p / (1 – p)
● Also, if we know the odds we can calculate the proportion or probability

– p = odds / (1 + odds)
● Odds may provide clearer and more intuitively useful information for some 

people 
– Odds measure chances of occurrence vs non-occurrence
– Probability measures chance against a whole
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Bayes Factor
● A Bayes factor (Berger, 2006a; Morey & Rouder, 2011; Rouder et al., 

2009) quantifies the strength of evidence, from a scientific test or 
experiment, for one conclusion over another. 

● Can also be thought of as the value for which we would multiply the 
prior odds to obtain the posterior odds. 

● Bayes factor will be equal to the posterior probability whenever the 
prior odds are 1 to 1 but will differ from the posterior probability when 
the prior probability distribution is unequal. 

● Bayes factors are similar to likelihood ratios and can provide an 
alternative to frequentist hypothesis testing using Bayesian inference 
(Goodman, 1999). 
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Credible interval

● A credible interval is the Bayesian analog for a confidence interval in frequentist 
statistics (Edwards, Lindman & Savage, 1963; Jaynes, 1976; Lee, 2004). 

● Tells us the range of variability (i.e. how sure we are) that we can reasonably be 
about analytic result or conclusion. 

● Bayesian inference regards the data as a fixed quantity of available information 
with which to calculate an interval that can be interpreted as indicative of the 
probability that the unknown parameter of interest exists within. 
– Frequentist inference views the available data as a random variable that is subject to 

expected variation upon replication
– Frequentist confidence interval tells us the proportion of replications that will include an 

unknown parameter of interest
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Naive-Bayes

● Naive-Bayes is a widely used application of Bayes’ Theorem to 
statistical decision making, machine-learning and artificial 
intelligence (Hand & Yu, 2001; Russel & Norvig, 2009). 

● In this case “naive” refers to the use of strong assumptions that 
the different sources of data are independent and contribute 
equally to the outcome (Domingos & Pazzani, 1997; Pazzani, 
1996). 

● Naive-Bayes algorithms are advantageous in that they are 
simpler to understand, rapid and easy to develop, and often 
perform well compared to more complex classifiers. 
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Objective Bayesian Analysis

● Objective-Bayesian Analysis (Berger, 2006b; Chen et al., 2010) 
refers to the use of Bayes’ theorem with objective (non-
subjective) prior information. 

● Objectivity is an ideal of scientific inquiry and scientific testing. 
● Completely objective information is often not available

– Some have questioned whether the ideal of complete objectivity is an 
illusion (Feinberg, 2006). 
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Subjective Bayesian Analysis

● Subjective Bayesian Analysis (Duda, Hart & Nillson, 1981; 
Goldstein, 2006) refers to the use of Bayes’ theorem with 
subjective (non-objective) prior information. 

● Many important practical problems begin with prior information 
that is incomplete and subjective or reliant on interpretation. 

● Subjective-Bayes methods are a framework for using data from 
a scientific test or experiment to obtain posterior probability 
estimates that have reduced error and uncertainty compared to 
the subjective prior information. 
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Bayes’ Theorem
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Bayes Theorem
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Bayes Theorem
In the form of a hypothesis test
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Bayes Theorem

H = Hypothesis

E = Evidence (data) 

P(E | H) = Test sensitivity rate (true-positive rate)

P(E) = True-positive rate + False-positive rate

P(H) = Prior probability (base rate)

P(H | E) = Posterior probability
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Bayes’ Theorem – rearranged

● H = Hypothesis
● E = Evidence (data) 
● P(E | H) = Likelihood (sensitivity or true-positive rate)
● P(H) = Prior probability (base rate)
● P(H | E) = Posterior probability
● P(E | 1-H) = Likelihood compliment (false-hit rate)
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Bayes’ Theorem – more rearrangement

● P(H | E) = Posterior probability
● P(E | H) = Likelihood statistic 

– Multinomial likelihood
– Observed score or lower

● P(H) = Prior probability (base rate)
● P(E | 1-H) = Likelihood compliment
● (1-P(H)) = Prior compliment (1 – base rate)
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Plugging in the concepts  
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Let’s make some numbers and try it...

● Test score = +5
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ESS-M Likelihood Function (3RQs)
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Let’s make some numbers and try it...

● Test score = +5
● Likelihood (cdfContCor) = .7387 (2.83 to 1)
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Let’s make some numbers and try it...

● Test score = +5
● Likelihood (cdfContCor) = .7387 (2.83 to 1)
● Prior = .5 (1 to 1)
● Prior compliment = .5 (1-.5)
● Likelihood compliment = .2613 (1-.7387)
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Now plugging in the numbers...
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Now plugging in the numbers...
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Why bother with the math?

● Because sometimes the prior is not 1 to 1
● Now that we have the math we can use any prior we want
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More about priors
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Bayesian Analysis

● Starts with a prior probability (prior odds) for a hypothesis
– Prior odds of deception
– Prior odds of truth

● Uses Bayes theorem
● Ends with a posterior probability (posterior odds)

– Odds of deception
– Odds of truth
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Bayes – Where does the prior come from?

● Objective information
– Base rate or incidence rate for a known population
– Number of suspects
– Previous analytic result

● Weak information
– Some reason for testing
– Possibly innocent
– Information is insufficient to  conclude either deception or truth
– Number of different possible results (DI/SR or NDI/NSR)
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Bayes – Where does the prior come from?

● The prior can be estimated from the number of different 
possible conclusions when there is no information or the 
information is very weak or insufficient to support any 
conclusion 
– Deceptive
– Truthful

● Prior = 1 to 1 (.5)
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Bayesian ESS-M Classifier
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ESS-M Classifier
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Prior Odds



  

Decision Rule
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Bayesian Analysis
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Multiplicity Correction for Odds
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Multinomial Likelihood Function
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Credible Interval
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ESS-M Classifier
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Bayesian ESS-M Classifier
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Bayesian ESS-M Classifier

● Combination of
– Prior odds

● Prior information, or
● Number of possibilities

– Posterior odds
● Likelihood Function

– Analytic theory of the polygraph test
● Decision rule
● Multiplicity correction

– Clopper-Pearson interval
● Posterior odds
● Alpha
● Number of RQs x repetitions

– Alpha level 
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Bayesian ESS-M Classifier

● A test result is statistically significant when the lower-limit of the 
credible interval has exceeded the prior probability
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NDI/NSR (Equal Prior)
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DI/SR (Equal Prior)
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INC/NO (Equal Prior)
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INC/NO (Equal Prior)
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NDI/NSR (Prior = 2 to 1)
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INC/NO (Prior = 2 to 1)
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DI/SR (Prior = 2 to 1)
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INC/NO (Prior = 2 to 1)
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Keep it simple

● Use the ESS-Multinomial reference model to determine the 
cutscores

● Use the cutscores the same way as always
– A result is statistically significant if the score
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Using the Bayesian ESS-M Classifier

● Four parts to any system of test data analysis
– Scoring features
– Numerical transformations
– Statistical reference model

● Normative data
● ESS Multinomial Bayesian model

– Decision rules
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ESS-Multinomial Reference Model

● Determine the cutscores
● Calculate the posterior odds (probability)

– Odds of deception
– Odds of truth-telling
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ESS-Multinomial Reference Table (3RQs)
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ESS-Multinomial Reference Tables

● Score (grand total)
● ways (number of scoresheet permutations that give each score)
● pmf (probability for with each score under the null-hypothesis)
● cdf (cumlative sum of the pmf)
● cdfContCor (continuity corrected cdf – so that the statistical 

likelihood estimate always exceeds the actual cdf value)
● odds (calculated from the cdfContCor)
● oddsLL05 (lower-limit of the 1-a/2% credible interval for the 

posterior odds of deception or truth)
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ESS-Multinomial Reference Tables

● Only 3 columns are useful in field practice
– Score (grand total)
– Odds (posterior odds of deception or truth)

● More informative than the point score
● More informative than a p-value

– OddsLL05 (lower limit of the 1-a/2% posterior credible interval)
● Used to determine the cutscores
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ESS-M Multinomial Reference Tables

 Calculated for
 Number of RQs
 3 to 5 iterations
 Combined sensor scores

 Respiration, EDA, Cardio
 Respiration, EDA, Cardio, Vasomotor

 Prior probability
 Prior information is insufficient to make a classification
 Prior = 1 to 1 is optimal for most purposes

 Alpha
 a = .05 for most purposes
 Alpha is used to calculate the 1 – a/2 credible interval

 1 – a/2 CI probability that the posterior  probability is different (better) than the prior



ESS-M Multinomial Reference Tables

 Calculated for up to 5 charts
 Event-specific (diagnostic) exams 

 2RQs
 3RQs
 4RQs

 Multiple-issue (screening) exams
 2RQs
 3RQs
 4RQs
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ESS-Multinomial Likelihood Function
(3RQs x 3Charts x 3 Sensors)



ESS-M Reference Tables
 Score

 Grand total score for all iterations of all RQs

 Ways
 Number of ways (scoresheet permutations) to achieve each score

 PDF (probability density function) 
 Proportion of ways to achieve each score / all possible scoresheet permutations

 CDF (cumulative distribution function)
 Running sum of the probabiliti (each value added to the previous sum)

 contCorCDF (continuity corrected CDF)
 Continuity corrected values will always exceed (never equal) the actual CDF
 Continuity correct for <.5 and >.5
 No continuity correction for the prior (.5)

 Odds (posterior odds)
 Odds of deception or truth are calculated from the contCorCDF column  (p / (1 – p)

 OddsLL05 
 Lower limit of the 1 – a/2 credible interval for the posterior odds of deception or truth-telling



Raymond Nelson (2018). Do not reproduce without permission.

How to use the ESS-M Tables



How to use the ESS-M Tables

 Alpha determines the upper-limit and lower-limit of the credible interval
 Only the lower-limit offers any interpretable meaning (worst-case scenario)
 Upper-limit (happy-number) of the credible interval is meaningless/un-interpretable

 Cut-scores are determined by the required alpha level
 Alpha = .05 for most purposes

 Cut-scores are also determined by the prior odds of deception
 Prior information is insufficient to conclude deception or truth-telling
 Prior = 1 to 1 is the optimal prior for most circumstances
 Published tables are available for the equal prior

 Cut-scores tell us whether or not a result is statistically significant
 Deception or truth-telling

 Cutscores are determined by the lower-limit of the posterior odds



More on ESS-M Cut-scores

 Cut-scores tell us whether or not a result is statistically significant
 Deception or truth-telling

 Cut-scores are determined by the prior odds of deception
 Prior information is insufficient to conclude deception or truth-telling
 Prior = 1 to 1 is the optimal prior for most circumstances
 Published tables are available for the equal prior

 Cut-scores are also determined by the required alpha level
 Alpha = .05 for most purposes

 Alpha determines the upper-limit and lower-limit of the credible interval
 Only the lower-limit offers any interpretable meaning (worst-case scenario)
 Upper-limit (happy-number) of the credible interval is meaningless/un-interpretable

 The lower-limit of the 1-a/2 credible interval determines the cutscore



How to use the ESS-M Tables (1)

 To get the cut-scores
 Start with the oddsLL05 column
 Locate the rows with the smallest lower-limit odds that exceeds the 

prior odds
 Lower-limit odds for deceptive classification
 Lower-limit odds for truthful classification

 Use the corresponding rows in the score column to determine the 
cut-scores

 Cut-score for deception
 Cut-score for truth-telling
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ESS-M Likelihood Function – 3RQs



Cut-scores: 3RQs

 Deceptive cut-score = -3
 Lower-limit of the 1 – a/2 credible interval = 1.15 to 1

 Truthful cut-score = +3
 Lower-limit of the 1 – a/2 credible interval = 1.15 to 1
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ESS-M Likelihood Function – 3RQs



How to use the ESS-M Tables (2)

 To get the posterior odds of deception or truth-telling
 Start with the score column
 Locate the table row that contains the test score
 Use the corresponding rows in the odds column to determine the 

posterior odds
 Odds of deception
 Odds of truth-telling
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ESS-M Likelihood Function – Subtotal Scores



ESS-M Likelihood Function – Subtotal Scores

 Odds
 OddsLL05

 Odds2RQ
 Odds2RQLL05

 Odds3RQ
 Odds3RQLL05

 Odds4RQ
 Odds4RQLL05
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ESS-M Likelihood Function – Subtotal Scores



How to use the Multinomial Subtotal Tables (1)

 To get the cut-scores
 Determine the number of RQs
 Select from  odds2RQLL05, odds3RQLL05, or odds4RQLL05
 Locate the rows with the smallest lower-limit odds that exceeds the prior odds

 Lower-limit odds for deceptive classification
 Lower-limit odds for truthful classification

 Use the corresponding rows in the score column to determine the cut-scores
 Cut-score for deception
 Cut-score for truth-telling
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ESS-M Likelihood Function – Subtotal Scores



When to use the statistical correction

 Event-specific (diagnostic) exams
 No statistical correction for grand total scores
 Use the statistical correction for deceptive subtotals with the TSR
 Truthful subtotal scores are not used with the TSR  

 Multiple-issue (screening) exams
 No statistical correction for deceptive subtotals

 Common in screening to avoid loss of test sensitivity

 Use statistical correction for truthful subtotals
 Reduces inconclusive results for innocent persons 
 Use of the lowest subtotal means that passing the test requires passing all RQs



Raymond Nelson (2018). Do not reproduce without permission.

ESS-M Likelihood Function – Subtotal Scores



Cut-scores: Sub-total Scores - Screening

 Deceptive cut-score = -3
 Lower-limit of the 1 – a/2 credible interval = 1.15 to 1

 Truthful cut-score 
 2RQs = +2

 Lower-limit of the 1 – a/2 credible interval = 1.47 to 1

 3RQs = +1 
 Lower-limit of the 1 – a/2 credible interval = 1.13 to 1

 4RQs = +1
 Lower-limit of the 1 – a/2 credible interval = 1.49 to 1



Cut-scores: Sub-total Scores - Diagnostic

 Truthful cut-score is not used
 Subtotal scores are not used for truthful classifications of diagnostic exams

 Deceptive cut-scores 
 2RQs = -5

 Lower-limit of the 1 – a/2 credible interval = 1.02 to 1

 3RQs = -7
 Lower-limit of the 1 – a/2 credible interval = 1.02 to 1

 4RQs = -9
 Lower-limit of the 1 – a/2 credible interval = 1.05 to 1
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ESS-M Cutscores

 Single issue exams

 Multiple issue exams



How to use the Multinomial Subtotal Tables (2)

 To get the posterior odds of deception or truth-telling
 Start with the score column
 Locate the table row that contains the test score
 Determine the number of RQs

 Use the corresponding rows in the odds2RQ, odds3RQ, or 
odds4RQ column to determine the posterior odds

 Odds of deception
 Odds of truth-telling
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Example 1: 3 RQ Diagnostic Exam

R1 = -4
R2 = -5
R3 = -3
Grand total = -12
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ESS-M Likelihood Function – 3RQs



Example 1: 3 RQ Diagnostic Exam

Grand total = -12
Posterior odds of deception = 15 to 1
Posterior probability = .94



Example 2: 3 RQ Diagnostic Exam

R1 = +2
R2 = +2
R3 = +1
Grand total = +5
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ESS-M Likelihood Function – 3RQs



Example 2: 3 RQ Diagnostic Exam

Grand total = +5
Posterior odds of deception = 2.8 to 1
Posterior probability = .74



Example 3: Subtotal Scores (multi-issue)

Always use the lowest subtotal score
R1 = +2
R2 = +3
R3 = -4 ← lowest subtotal score
R4 = +1
No grand total score for the SSR
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ESS-M Likelihood Function – Subtotal Scores



Example 3: Subtotal Score

Lowest subtotal score = -4
Posterior odds of deception = 4.2 to 1
Posterior probability = .81



Example 4: Subtotal Scores (multi-issue)

Always use the lowest subtotal score
R1 = +1 ← lowest subtotal score
R2 = +2
R3 = +3
R4 = +4
No grand total score for the SSR
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ESS-M Likelihood Function – Subtotal Scores



Example 4: Subtotal Score

Lowest subtotal score = +1
Posterior odds of deception = 1.5 to 1
Posterior probability = .60



Bayesian analytics?

 Provides a more intuitive statistical estimate of the effect size of practical 
interest
 Deception
 Truth-telling

 Bayesian posterior odds (posterior probabilities) are more intuitive and 
less vulnerable than frequentist p-values
 Less vulnerable to misunderstanding
 Less vulnerable to abuse
 Less vulnerable to overestimation
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Bayesian Analysis
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Bayesian ESS-Multinomial Classifier
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Bayes – Vocabulary Primer

● Bayesian inference
● Bayes Theorem
● Probability (Bayesian 

probability)
● Prior probability (prior 

probability distribution or
a priori)

● Likelihood function
● Posterior probability 

(a posteriori)

● Odds
● Bayes Factor
● Credible interval
● Naive-Bayes
● Objective Bayesian 

Analysis
● Subjective Bayesian 

Analysis



Raymond Nelson (2018). Do not reproduce without permission.

100

The End.

raymond.nelson@gmail.com  1-917-293-3208

mailto:raymond.nelson@gmail.com
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