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Practical Polygraph: How to Write Probability Information 
in Evidentiary Polygraph Reports (Standard 1.8.3)

Raymond Nelson

APA Standard 1.8.3 states that probabi-
listic information shall be provided along 
with categorical test results of eviden-
tiary exams – defined in Section 1.1 of 
the APA Standards of Practice as those 
exams conducted with the intention that 
the results are to be used as a basis of in-
formation in a legal proceeding. Provision 
of statistical information has become a 
common standard in science, scientific 
testing, and forensics. The reason for this 
requirement is to educate consumers as 
to the inherently probabilistic nature of 
much scientific information, and to re-
duce the human tendencies to expect infa-
llibility and to exaggerate potential effect 
sizes. The inclusion of probability informa-
tion along with categorical results or pro-
fessional opinions is a general standard in 
forensic science following Daubert which 
held that good science is characterized 
by reasonable descriptions of known or 
potential error rates.  Probability informa-
tion can be described in several ways. 

Reference to published standards

The simplest way to provide probabilis-
tic information in support of a categori-
cal polygraph test result is to refer to the 
APA Standards of Practice that defines 
the accuracy effect size requirements for 
polygraph techniques selected for vari-
ous purposes. Evidentiary polygraphs are 
those that are conducted with the goal or 
intention that the test result will is to be 
used as a basis of information in a legal 
proceeding. Paired testing involves the 
conduct of two polygraph exams on two 
opposing witnesses by two different ex-
aminers who are both blind to the other 
test outcome. Investigative polygraphs 
are those conducted without the inten-
tion to use the test results in a legal con-
text, such as those polygraphs conducted 
in applicant screening, security screen-
ing, and post-conviction monitoring pro-
grams. 
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Section 1.1.7.3.1 of the APA Standards of 
Practice state that polygraph techniques 
used for evidentiary exams shall provide 
an overall accuracy rate of .90 or greater, 
with an inconclusive rate of .20 or lower. 
Section 1.1.7.3.2 states that polygraph 
techniques used for paired testing are re-
quired have an overall accuracy rate of .86 
or greater with an inconclusive rate of .20 
or lower (the lower accuracy rate is permit-
ted because the accuracy effects two dif-
ferent results from examiners, both blind 
to the other result, can be combined as 
independent probability events, with a re-
sulting effect size that outperforms either 
test alone when the two blind concur that 
one witness was deceptive and the other 
was truthful). Accuracy requirements for 
investigative polygraph techniques are 
described in Section 1.1.7.3.3 of the APA 
Standards of Practice. These are required 
to provide an overall accuracy rate of .80 
or greater with an inconclusive rate of .20 
or lower. The following is an example of 
how to report compliance with Standard 
1.8.3 for evidentiary polygraphs. The text 
can be modified for tests conducted for 
pair-testing and investigative purposes.

The test data were recorded using a test 
format and analysis method that conform 
to the requirement of the APA Standards 
of Practice Section 1.1.7.3.1, including an 
overall accuracy rate of 90% or greater.

When test accuracy information is ex-
pressed as a function of frequentist ac-
curacy metrics observed in published 
studies, it does not describe the strength 
of information for any individual test re-
sult. Instead, the strength of any individ-
ual examination result is estimated as 

a function of the Standards of Practice, 
premised on the conduct of the examina-
tion using methods that are known to be 
consistent with the standards. 

Frequentist accuracy and error rates for 
the test format

Another way to provide probability infor-
mation for an evidentiary examination is 
to describe the frequentist test accuracy 
metrics. This includes simple accuracy 
metrics such as true-positive, true-neg-
ative, false-positive, and false-negative 
rates, and can also include aggregated 
metrics positive-predictive-value and 
negative-predictive-value, and related 
metrics such as the false-positive-index 
and false-negative-index. Description of 
the total percent correct and percent in-
correct is another example. These met-
rics can be studied for comparison ques-
tion techniques as a whole, or for unique 
formulations of the comparison question 
technique. The following is an example of 
how to report the for accuracy metrics for 
a four-question evidentiary test format. 
This text can be modified for other test 
formats. 

The test data were recorded using a 4-Ques-
tion single-issue polygraph technique 
(Raskin Technique). When analyzed using 
the ESS-M data analysis method, effect siz-
es for this technique have been summarized 
in an appendix (APA Editorial Staff, 2020) to 
the 2011 meta-analytic survey of validated 
polygraph techniques (APA, 2011). Overall 
accuracy for this method was reported in a  
reported at .944 (95% CI .897 to .987) with 
an inconclusive rate of .031 (.01 to .092). 
Test sensitivity was .923, and specificity 



  66      APA Magazine 2023, 56 (6)

REGULAR FEATURES

was .908. The reported false positive error 
rate was .046 and the false negative rate 
was .062.

Importantly, these statistics should not be 
reported from a single study, but should 
be aggregated from a corpus of available 
research data as is commonly done in re-
search literature reviews and meta-ana-
lytic research. Another important consid-
eration is that research may be accom-
plished with balanced study groups, or 
with imbalance groups, and aggregated 
frequentist statistics may not be readily 
applicable to field settings in which the in-
cidence rate or prior probability is imbal-
anced. A third important consideration is 
that individual professionals generally do 
not outperform the limits or capabilities of 
the underlying science – despite the fact 
that it is sometimes socially gratifying to 
make claims of personal accuracy rates 
that are extremely high. (This is similar to 
the way that most investors do not, over 
time, outperform the financial markets.) 

When the exact causes of testing errors 
are not known, testing errors are regarded 
as analogous to random measurement 
errors. Of course, when the exact cause 
of an error is known it can be corrected 
or avoided, and test accuracy is thus in-
creased. But it is important to always re-
member that scientific tests, of all types, 
are not expected to be infallible. This is be-
cause the purpose of any scientific test is 
to quantify a phenomena of interest that 
cannot be subject to physical measure-
ment (still subject to random measure-
ment error) or deterministic perfection 
(which would be immune to both random 
measurement error and human behavior). 
Scientific tests make use the statistical 
relationship between available proxy data 

and the phenomena of interest. Because 
test data and test results are not direct 
physical measurements, they are only ex-
pected to quantify the margin of uncer-
tainty that surrounds a conclusion or test 
result.

Frequentist test accuracy metrics charac-
terize all testing errors as random events 
– assuming that the tests are conducted 
correctly, and that errors are not attribut-
able to procedural error. The likelihood of 
an error for any individual case is estimat-
ed as a function of the random error rate. 
In a complimentary manner, the likelihood 
of a correct test result for any individual 
case is also estimated as a function of 
the known effect sizes for a polygraph 
technique. A limitation of this method is 
that some frequentist accuracy metrics 
of interest may be non-resistant to in-
fluence from imbalanced priors. A more 
practical limitation of this method is that 
it does not provide intuitively useful infor-
mation about the strengths or limitations 
of the data for any individual case. 

Statistical classifiers

A statistical classifier is a reproducible 
statistical value for an individual poly-
graph test, and is used to make a categor-
ical classification of the test result based 
on the strength of the statistical value. A 
number of different types of statistical 
classifiers are possible. A common sim-
ple classifier is the p-value, which can be 
calculated using either empirical or theo-
retical reference distributions. More com-
plex statistical classifiers are also com-
monly used, including logistic functions, 
naive Bayes classifiers, support vector 
machines, k-nearest neighbor methods, 
and others. The following is an example 
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of how to report a statistical classifier (p-
value) for an evidentiary polygraph test 
result. This text can be modified for other 
test formats and other test outcomes.

Using the ESS, an evidence-based, norm-
referenced, and standardized protocol for 
test data analysis, the grand total score of 
-5 equals or exceeds the required cutscore 
of -4 for deceptive classifications. The level 
of statistical significance, is calculated at 
p = .032, which is equal to or less than the 
required alpha boundary (a = .05), and indi-
cates that only a small proportion of truthful 
persons (3.2%) can be expected to produce 
an equal or lower test score. These results 
support the conclusion that there is decep-
tion indicated by the physiological respons-
es to the test stimulus questions during this 
examination.

Statistical classifiers are mathematical 
abstractions that provide an objective ba-
sis for decision-making at the individual 
case level. However, they do not, by them-
selves, describe the practical likelihood 
correct or incorrect classification at the 
level of an individual case or a group of 
cases. They do not attempt to provide in-
formation that can be easily or intuitively 
descriptive of the practical strength of 
information at the individual case level. 
However, statistical classifiers can be 
combined with other methods, especial-
ly Bayes Theorem, to provide posterior 
or outcome information that has greater 
practical and intuitive meaning. 

Posterior or outcome probabilities 

Posterior conditional probabilities, also 
known as posterior probabilities or poste-
rior distributions, and outcome confidence 

levels are related concepts in probability 
and statistics. They are probabilities as-
signed to specific events or outcomes 
after observing and analyzing the test 
data. Posterior conditional probabilities 
provide a statistical basis for classifica-
tion while also giving information that 
describes the practical strength of the 
information for each case. In the context 
of Bayesian Analysis, posterior probabili-
ties are calculated using Bayes’ theorem, 
which relates the conditional probabil-
ity of an event A given evidence B to the 
prior probability of A and the likelihood 
of B given A. Importantly, both the con-
struction and conduct of the polygraph 
test (including the, interview, sequence of 
test question, instrumentation, and sen-
sors) and the analysis of the test data 
are premised on the basic theory of the 
polygraph test – that greater changes in 
physiological activity are loaded at differ-
ent types of test stimuli as a function of 
deception and truth-telling in response to 
relevant target stimuli. 

Posterior probabilities are essential in 
Bayesian statistics, because they allow 
us to use new evidence or data to make 
objective and mathematical updates to 
the probabilities associated with differ-
ent possible outcomes. Bayesian poste-
rior probabilities are often expressed in 
odds form, and lead easily to the calcula-
tion of Bayes Factor – which describes, 
in odds form, the change or increase in 
the probabilistic strength of information 
in support of a particular classification or 
conclusion. Following is an example of 
how to report the posterior information in 
support of a categorical conclusion for an 
evidentiary polygraph exam. The text can 
be modified for other test outcomes. 
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Using the ESS-M, , an evidence-based, norm-
referenced, and standardized protocol for 
test data analysis, the grand total score of 
19 equaled or exceeded the required nu-
merical cut-score (3). The posterior odds of 
truth-telling was 87 to 1, for which the pos-
terior probability was .98. The lower limit of 
the 1-alpha Bayesian credible interval was 
15 to 1, which exceeded the prior odds (1 to 
1). This indicates a likelihood of greater than 
95% that the posterior odds of truth exceed 
the prior odds. The posterior information for 
this examination was increased by a Bayes 
Factor of 87 times. These analytic results 
support the conclusion that there were no 
significant reactions indicative of deception 
in the loading of recorded changes in physi-
ological activity in response to the relevant 
test stimuli during this examination.

Outcome confidence levels are another 
way to express the degree of certainty or 
confidence associated with a particular 
prediction or decision made by a proba-
bilistic model, such as Bayesian network 

or other statistical classifier. These confi-
dence levels are often expressed as deci-
mal proportions between 0 and 1, or as 
a percentage, with higher values indicat-
ing greater confidence in the outcome or 
prediction. Outcome confidence levels 
are typically derived from posterior condi-
tional probabilities, and can be useful for 
decision making and risk assessment. 

In practice, both posterior conditional 
probabilities and outcome confidence lev-
els are valuable for their ability to provide 
practical and intuitively useful descrip-
tions of the strength of information in 
support of predictions and classifications 
made by probabilistic models. They can 
be used to set decision thresholds (e.g., 
classifying data points based on a mini-
mum confidence level), and to provide 
additional information to users about the 
level of certainty that can be reasonably 
assigned to a classification or conclu-
sion.
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